Communication
ChemComm
on beads attached to the linker. The lower yield of the fully Notes and references
synthetic PHD lowers the surface density on the bead, which in
1
(a) H. E. Hallen, H. Luo, J. S. Scott-Craig and J. D. Walton, Proc.
Natl. Acad. Sci. U. S. A., 2007, 104, 19097–19101; (b) H. Luo,
H. E. Hallen-Adams and J. D. Walton, J. Biol. Chem., 2009, 284,
turn limits the F-actin polymerization seen for the synthetic PHD.
It is thus unlikely that intermediate products and truncates gave
the observed effect as monocyclic and seco-phalloidin analogs are
inactive. To further corroborate bead-bound activity, the synthetic
PHD was cleaved from the resin and derivatized to provide
a fluorescent PHD-bioconjugate, which specifically stained the
F-actin filaments in cells.
1
8070–18077; (c) H. Luo, S. Y. Hong, R. M. Sgambelluri, E. Angelos,
X. Li and J. D. Walton, Chem. Biol., 2014, 21, 1610–1617;
d) R. M. Sgambelluri, M. O. Smith and J. D. Walton, ACS Synth.
(
Biol., 2018, 7, 145–152.
(a) E. M. De La Cruz and T. D. Pollard, Biochemistry, 1996, 35,
2
1
4054–14061; (b) P. G. Allen, C. B. Shuster, J. Kas, C. Chaponnier,
P. A. Janmey and I. M. Herman, Biochemistry, 1996, 35, 14062–14069.
In contrast to previous solution- and solid-phase PHD syntheses
that provide active analogs, here we demonstrate the potential for
producing an active PHD analog where activity can be verified both
on- and off-bead. These results now inform production of an OBOC
library of PHD, which may find use in targeting various actin
isoforms. Moreover, this work establishes a potential platform for
creating libraries of other tryptathionine-bridged bicyclic peptides.
3 (a) E. Wulf, A. Deboben, F. A. Bautz, H. Faulstich and T. Wieland,
Proc. Natl. Acad. Sci. U. S. A., 1979, 76, 4498–4502; (b) J. Anderl,
H. Echner and H. Faulstich, Beilstein J. Org. Chem., 2012, 8,
2072–2084; (c) C. A. Rhodes and D. H. Pei, Chem. – Eur. J., 2017,
23, 12690–12703.
(a) T. Oda, K. Namba and Y. Maeda, Biophys. J., 2005, 88, 2727–2736;
4
(
8
b) M. Lorenz, D. Popp and K. C. Holmes, J. Mol. Biol., 1993, 234,
26–836; (c) T. Wieland, T. Miura and A. Seeliger, Int. J. Pept. Protein
Res., 1983, 21, 3–10; (d) G. Zanotti, L. Falcigno, M. Saviano,
G. D’Auria, B. M. Bruno, T. Campanile and L. Paolillo, Chem. –
Eur. J., 2001, 7, 1479–1485; (e) L. Falcigno, S. Costantini, G. D’Auria,
B. M. Bruno, S. Zobeley, G. Zanotti and L. Paolillo, Chem. – Eur. J.,
2001, 7, 4665–4673; ( f ) H. Faulstich, S. Zobeley, D. Heintz and
G. Drewes, FEBS Lett., 1993, 318, 218–222.
M. O. Steinmetz, D. Stoffler, S. A. Muller, W. Jahn, B. Wolpensinger,
K. N. Goldie, A. Engel, H. Faulstich and U. Aebi, J. Mol. Biol., 1998,
276, 1–6.
12
While a late-stage tryptathionylation following macrocyclization
could be considered to enable a circularly permutable route
thereby diversifying the starting amino acid and linkage site, such
a
would require coupling to the sterically congested N of the HPI,
5
6
which would lower yields. Such libraries can be screened on beads
to identify new leads which could be readily bioconjugated.
By employing the glyoxamide condensation chemistry here, one
may readily link an antibody, aptamer, label, or toxin to a newly
discovered bicyclic peptide lead. Based on these findings, bicyclic
octapeptide libraries that could include amanitin analogs as
inhibitors of transcription is also readily envisaged.
(a) W. E. Savige and A. Fontana, Chem. Commun., 1976, 600–601;
(
1
b) W. E. Savige and A. Fontana, Int. J. Pept. Protein Res., 1980, 15,
02–112; (c) J. P. May, P. Fournier, J. Pellicelli, B. O. Patrick and
D. M. Perrin, J. Org. Chem., 2005, 70, 8424–8430; (d) A. Blanc, F. Xia,
M. Todorovic and D. M. Perrin, Amino Acids, 2017, 49, 407–414.
(a) L. A. Schuresko and R. S. Lokey, Angew. Chem., Int. Ed., 2007, 46,
7
8
3
547–3549; (b) M. O. Anderson, A. A. Shelat and R. K. Guy, J. Org.
In summary, the salient points of this report are as follows:
Chem., 2005, 70, 4578–4584.
(a) K. S. Lam, S. E. Salmon, E. M. Hersh, V. J. Hruby, W. M.
Kazmierski and R. J. Knapp, Nature, 1991, 354, 82–84; (b) R. A.
Houghten, C. Pinilla, S. E. Blondelle, J. R. Appel, C. T. Dooley and
J. H. Cuervo, Nature, 1991, 354, 84–86.
(1) a solid phase synthetic route towards a bead-bound syn-
thetic phalloidin now incorporates linker-arm motifs for mass-
spec tagging and biorthogonal bead-cleavage with the potential
for fluorescent derivatization; (2) a bioassay allowing the specific
F-actin polymerization on beads containing a phalloidin derivative
has been performed; (3) these synthetic approaches inform
strategies for the design of an OBOC array of a bicyclic peptide
structure inspired by the phallotoxin family of peptides.
9
O. Melnyk, J. S. Fruchart, C. Grandjean and H. Gras-Masse, J. Org.
Chem., 2001, 66, 4153–4160.
1
1
1
0 X. S. Wang, B. S. Huang, X. Y. Liu and P. Zhan, Drug Discovery Today,
2016, 21, 118–132.
1 H. Heber, H. Faulstich and T. Wieland, Int. J. Pept. Protein Res., 1974,
6, 381–389.
2 J. P. May and D. M. Perrin, Chem. – Eur. J., 2008, 14, 3404–3409.
The synthetic procedures for named compounds and their 13 J. H. Kim and S. Kim, RSC Adv., 2014, 4, 26516–26523.
1
1
1
1
4 C. Mendre, R. Pascal and B. Calas, Tetrahedron Lett., 1994, 35,
429–5432.
5 J. Martinez, J. Laur and B. Castro, Tetrahedron Lett., 1983, 24,
5219–5222.
6 A. Kumar, Y. E. Jad, B. G. de la Torre, A. El-Faham and F. Albericio,
J. Pept. Sci., 2017, 23, 763–768.
7 (a) S. M. Agten, P. E. Dawson and T. M. Hackeng, J. Pept. Sci.,
2016, 22, 271–279; (b) S. J. Wang, D. Gurav, O. P. Oommen and
O. P. Varghese, Chem. – Eur. J., 2015, 21, 5980–5985; (c) R. J. Spears
and M. A. Fascione, Org. Biomol. Chem., 2016, 14, 7622–7638.
8 (a) L. A. Cameron, M. J. Footer, A. van Oudenaarden and J. A.
Theriot, Proc. Natl. Acad. Sci. U. S. A., 1999, 96, 4908–4913;
spectroscopic data can be found in the ESI.†
5
This work was supported by funds from NSERC.
We thank Dr E. Polishchuk and Ms J. Chen for cell-culture
work, Drs T. Loonchanta and G. Sun for help in confocal micro-
scopy and Dr D. Smith and Mr M. Yeung for help with MALDI-
TOF-MS, LR-ESI-ion trap-MS, and HR-ESI-TOF-MS analysis.
1
Conflicts of interest
(
b) I. V. Maly and G. G. Borisy, Proc. Natl. Acad. Sci. U. S. A., 2001,
There are no conflicts to declare.
98, 11324–11329.
3
88 | Chem. Commun., 2019, 55, 385--388
This journal is ©The Royal Society of Chemistry 2019