Page 5 of 7
Journal of the American Chemical Society
(22)
Brooks, W. L. A.; Sumerlin, B. S. Synthesis and Applications of
Notes
Boronic Acid-Containing Polymers: From Materials to Medicine. Chem.
Rev. 2016, 116, 1375-1397.
1
The authors declare no competing financial interests.
2
3
4
5
6
7
8
9
(23)
Akgun, B.; Hall, D. G. Boronic Acids as Bioorthogonal Probes
ACKNOWLEDGMENT
for Site-Selective Labeling of Proteins. Angew. Chem. Int. Ed. 2018, 57,
13028-13044.
(24)
Veiros, L. F.; Florindo, H. F.; Gois, P. M. P. Modular Assembly of
Reversible Multivalent Cancer-Cell-Targeting Drug Conjugates. Angew.
Chem. Int. Ed. 2017, 56, 9346-9350.
The project was funded by the Deutsche Forschungsgemeinschaft
(DFG, German Research Foundation) – Project number 316249678
– SFB 1279 (C01) and Project number: 318290668 – SPP 1923 as
well as by an ERC Synergy Grant under grant agreement No.
319130 (BioQ). M. M. Zegota thanks the Marie Curie International
Training Network Protein Conjugates for a research scholarship.
Santos, F. M. F.; Matos, A. I.; Ventura, A. E.; Gonçalves, J.;
(25)
Wu, X.; Li, Z.; Chen, X.-X.; Fossey, J. S.; James, T. D.; Jiang,
Y.-B. Selective sensing of saccharides using simple boronic acids and their
aggregates. Chem. Soc. Rev. 2013, 42, 8032-8048.
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
(26)
Sun, X.; James, T. D.; Anslyn, E. V. Arresting “Loose Bolt”
REFERENCES
Internal Conversion from −B(OH)2 Groups is the Mechanism for Emission
Turn-On in ortho-Aminomethylphenylboronic Acid-Based Saccharide
Sensors. J. Am. Chem. Soc. 2018, 140, 2348-2354.
(1)
inspired systems. Nat. Nanotechnol. 2016, 11, 585-592.
(2) Hirao, I.; Kimoto, M.; Yamashige, R. Natural versus Artificial
Grzybowski, B. A.; Huck, W. T. S. The nanotechnology of life-
(27)
Seidler, C.; Zegota, M. M.; Raabe, M.; Kuan, S. L.; Ng, D. Y.
Creation of Base Pairs in DNA: Origin of Nucleobases from the
Perspectives of Unnatural Base Pair Studies. Acc. Chem. Res. 2012, 45,
2055-2065.
W.; Weil, T. Dynamic Core–Shell Bioconjugates for Targeted Protein
Delivery and Release. Chem. Asian J. 2018, 13, 3474-3479.
(28)
dynamic boronic acid chemistry. Tetrahedron 2017, 73, 4979-4987.
(29) Smithmyer, M. E.; Deng, C. C.; Cassel, S. E.; LeValley, P. J.;
Sumerlin, B. S.; Kloxin, A. M. Self-Healing Boronic Acid-Based Hydrogels
for 3D Co-cultures. ACS Macro Lett. 2018, 7, 1105-1110.
(30)
chimeras: from high binding affinity towards biological function. Biol.
Chem. 1998, 379, 1045-1052.
(31)
Lee, J. Efficient Synthesis of a Phosphinate Bis-Amino Acid and Its Use in
the Construction of Amphiphilic Peptides. J. Org. Chem. 1994, 59, 4206-
4210.
Seidler, C.; Ng, D. Y. W.; Weil, T. Native protein hydrogels by
(3)
Liu, Y.; Lehn, J.-M.; Hirsch, A. K. H. Molecular Biodynamers:
Dynamic Covalent Analogues of Biopolymers. Acc. Chem. Res. 2017, 50,
376-386.
(4)
Swain, J. A.; Iadevaia, G.; Hunter, C. A. H-Bonded Duplexes
based on a Phenylacetylene Backbone. J. Am. Chem. Soc. 2018, 140,
11526-11536.
Uhlmann, E. Peptide nucleic acids (PNA) and PNA-DNA
(5)
Stross, A. E.; Iadevaia, G.; Núñez-Villanueva, D.; Hunter, C. A.
Sequence-Selective Formation of Synthetic H-Bonded Duplexes. J. Am.
Chem. Soc. 2017, 139, 12655-12663.
Lei, H.; Stoakes, M. S.; Schwabacher, A. W.; Herath, K. P. B.;
(6)
Stabilities. Acc. Chem. Res. 2012, 45, 2077-2087.
(7) Zhang, Y.; Cao, R.; Shen, J.; Detchou, C. S. F.; Zhong, Y.;
Gong, B. Molecular Duplexes with Encoded Sequences and
(32)
Martínez-Aguirre, M. A.; Villamil-Ramos, R.; Guerrero-
Wang, H.; Zou, S.; Huang, Q.; Lian, C.; Wang, Q.; Zhu, J.; Gong, B.
Hydrogen-Bonded Duplexes with Lengthened Linkers. Org. Lett. 2018, 20,
1555-1558.
Alvarez, J. A.; Yatsimirsky, A. K. Substituent Effects and pH Profiles for
Stability Constants of Arylboronic Acid Diol Esters. J. Org. Chem. 2013,
78, 4674-4684.
(33)
calculator. Nucleic Acid. Res. 2007, 35, W43-W46.
(34) Ratilainen, T.; Holmén, A.; Tuite, E.; Haaima, G.; Christensen,
L.; Nielsen, P. E.; Nordén, B. Hybridization of Peptide Nucleic Acid.
Biochemistry 1998, 37, 12331-12342.
(35)
O-H Bond Dissociation Enthalpies and Ionization Potentials of Catechols:
A DFT Study and Its Implications in the Rational Design of Phenolic
Antioxidants and Elucidation of Structure–Activity Relationships for
Flavonoid Antioxidants. Chem. Eur. J. 2003, 9, 502-508.
(8)
Makiguchi, W.; Tanabe, J.; Yamada, H.; Iida, H.; Taura, D.;
Kibbe, W. A. OligoCalc: an online oligonucleotide properties
Ousaka, N.; Yashima, E. Chirality- and sequence-selective successive self-
sorting via specific homo- and complementary-duplex formations. Nat.
Commun. 2015, 6, 7236.
(9)
Iida, H.; Ohmura, K.; Noda, R.; Iwahana, S.; Katagiri, H.;
Ousaka, N.; Hayashi, T.; Hijikata, Y.; Irle, S.; Yashima, E. Double-
Stranded Helical Oligomers Covalently Bridged by Rotary Cyclic Boronate
Esters. Chem. Asian J. 2017, 12, 927-935.
Zhang, H.-Y.; Sun, Y.-M.; Wang, X.-L. Substituent Effects on
(10)
Yashima, E.; Ousaka, N.; Taura, D.; Shimomura, K.; Ikai, T.;
Maeda, K. Supramolecular Helical Systems: Helical Assemblies of Small
Molecules, Foldamers, and Polymers with Chiral Amplification and Their
Functions. Chem. Rev. 2016, 116, 13752-13990.
(36)
Gulley-Stahl, H.; Hogan, P. A.; Schmidt, W. L.; Wall, S. J.;
Buhrlage, A.; Bullen, H. A. Surface Complexation of Catechol to Metal
Oxides: An ATR-FTIR, Adsorption, and Dissolution Study. Environ. Sci.
Technol. 2010, 44, 4116-4121.
(11)
Sisco, S. W.; Moore, J. S. Homochiral Self-Sorting of BINOL
Macrocycles. Chem. Sci. 2014, 5, 81-85.
(12)
Epstein, E. S.; Martinetti, L.; Kollarigowda, R. H.; Carey-De La
(37)
Zhang, J. X.; Fang, J. Z.; Duan, W.; Wu, L. R.; Zhang, A. W.;
Torre, O.; Moore, J. S.; Ewoldt, R. H.; Braun, P. V. Modulating
Noncovalent Cross-links with Molecular Switches. J. Am. Chem. Soc. 2019,
141, 3597-3604.
Dalchau, N.; Yordanov, B.; Petersen, R.; Phillips, A.; Zhang, D. Y.
Predicting DNA hybridization kinetics from sequence. Nat. Chem. 2017,
10, 91-98.
(13)
Powell, K. How biologists are creating life-like cells from
(38)
Platnich, C. M.; Hariri, A. A.; Rahbani, J. F.; Gordon, J. B.;
scratch. Nature 2018, 563, 172-175.
Sleiman, H. F.; Cosa, G. Kinetics of Strand Displacement and Hybridization
on Wireframe DNA Nanostructures: Dissecting the Roles of Size,
Morphology, and Rigidity. ACS Nano 2018, 12, 12836-12846.
(39)
controllers for directing material expansion. Nat. Commun. 2018, 9, 3766.
(40) Machinek, R. R. F.; Ouldridge, T. E.; Haley, N. E. C.; Bath, J.;
Turberfield, A. J. Programmable energy landscapes for kinetic control of
DNA strand displacement. Nat. Commun. 2014, 5, 5324.
(41)
Crowley, P. B. Noncovalent PEGylation via Sulfonatocalix[4]arene–A
Crystallographic Proof. Bioconjugate Chem. 2018, 29, 3999-4003.
(42)
Proteins: Recent Developments. J. Org. Chem. 2014, 79, 10727-10733.
(43) Takeda, K.; Uchihashi, T.; Watanabe, H.; Ishida, T.; Igarashi,
K.; Nakamura, N.; Ohno, H. Real-time dynamic adsorption processes of
cytochrome c on an electrode observed through electrochemical high-speed
atomic force microscopy. PLOS One 2015, 10, e0116685-e0116685.
(14)
Göpfrich, K.; Platzman, I.; Spatz, J. P. Mastering Complexity:
Towards Bottom-up Construction of Multifunctional Eukaryotic Synthetic
Cells. Trends Biotechnol. 2018, 36, 938-951.
Fern, J.; Schulman, R. Modular DNA strand-displacement
(15)
applications. Mater. Today 2016, 19, 516-532.
(16) Seeman, N. C.; Sleiman, H. F. DNA nanotechnology. Nat. Rev.
Mater. 2017, 3, 17068.
Xu, C.; Hu, S.; Chen, X. Artificial cells: from basic science to
(17)
Crini, G. Review: A History of Cyclodextrins. Chem. Rev. 2014,
Mummidivarapu, V. V. S.; Rennie, M. L.; Doolan, A. M.;
114, 10940-10975.
(18)
Barrow, S. J.; Kasera, S.; Rowland, M. J.; del Barrio, J.;
Scherman, O. A. Cucurbituril-Based Molecular Recognition. Chem. Rev.
2015, 115, 12320-12406.
Nischan, N.; Hackenberger, C. P. R. Site-specific PEGylation of
(19)
Supramolecular biomaterials. Nat. Mater. 2015, 15, 13-26.
(20) Klajn, R. Spiropyran-based dynamic materials. Chem. Soc. Rev.
2014, 43, 148-184.
Webber, M. J.; Appel, E. A.; Meijer, E. W.; Langer, R.
(21)
Kathan, M.; Eisenreich, F.; Jurissek, C.; Dallmann, A.; Gurke,
(44)
Krall, N.; da Cruz, F. P.; Boutureira, O.; Bernardes, G. J. L. Site-
J.; Hecht, S. Light-driven molecular trap enables bidirectional manipulation
of dynamic covalent systems. Nat. Chem. 2018, 10, 1031-1036.
selective protein-modification chemistry for basic biology and drug
development. Nat. Chem. 2015, 8, 103-113.
ACS Paragon Plus Environment