A. Palmieri et al. / Tetrahedron Letters 50 (2009) 3287–3289
3289
Chem. Eur. J. 2008, 14, 7450–7459; (c) Baxendale, I. R.; Ley, S. V.. In New Avenues
to Efficient Chemical Synthesis—Emerging Technologies; Seeberger, P. H., Blume,
T., Eds.; Springer: Berlin, Heidelberg, 2007; Vol. 3, pp 151–185; (d) Baxendale, I.
R.; Hayward, J. J.; Ley, S. V. Comb. Chem. High Throughput Screen. 2007, 10, 802–
836; (e) Watts, P.; Wiles, C. Org. Biomol. Chem. 2007, 5, 727–732; (f) Mason, B.
P.; Price, K. E.; Steinbacher, J. L.; Bogdan, A. R.; McQuade, D. T. Chem. Rev. 2007,
107, 2300–2318; (g) Hodge, P. Ind. Eng. Chem. Res. 2005, 44, 8542–8553; (h)
Kirschning, A.; Jas, G. Top. Curr. Chem. 2004, 242, 209–239; (i) Hodge, P. Curr.
Opin. Chem. Biol. 2003, 7, 362–373.
and bromination of the benzene ring was not observed for the ben-
zamides with electron-donating substituents. Keillor and co-work-
ers14 have reported the batch synthesis of methyl carbamates 2a–
b, g and k via Hofmann rearrangement using NBS/DBU; however,
these conditions typically required reaction times of 25 min or more
in refluxing methanol. Conversely, the preparation of these com-
pounds using microfluidic conditions has resulted in a 25-fold re-
duction in reaction time with comparable yields. This
demonstrates that under the present conditions, enhanced reaction
rates result primarily from the laminar flow interaction of reagents
and the superheating of methanol. From these experiments, we
can conclude that the reaction profiling process is rapid, and that re-
liable reaction conditions can be found to deliver a useful chemical
transformation, which further extends the use of the NanoTekTM flow
platform.
Furthermore,inotherexperiments, wewereabletoshowthatthe
reaction parameters defined for this equipment can be readily trans-
ferred to other flow apparatus. In particular, the use of the Uniqsis
FlowSynTM continuous flow reactor15 readily scales the Hofmann
rearrangement reactions reported herein up to 1 g scale. The fully
integrated instrument employs a dual channel flow system, with
each channel independently driven by a variable high-pressure
pump. The starting materials and reagents are united in a T-mixing
piece and then passed into either a coil or column reactor. For our
scale-up experiments, the rearrangement conditions established
on the NanoTekTM flow platform were replicated. In a general proce-
dure, a mixtureof DBU(2 equiv) andtheappropriateamide (1 equiv)
was loaded into one channel, and NBS (2 equiv) into the second
channel. The concentration of reagents in methanol was 75–
150 mM. The combined reactant streams were directed into a
stainless steel coil reactor (20 mL volume) and a total flow rate of
2.4 mL/min. The reactor temperature was maintained at 120 °C to
ensure complete conversion. The resulting flow stream was col-
lected, then purified by passage through a short silica plug. These
conditions allowed for the scale-up synthesis of methyl carbamates
2a, g and l at 88%, 74% and 37% yields, respectively. The successful
gramscalesynthesisof these compounds demonstratesthetransfer-
ability and robustness of the optimized reactions established on the
NanoTekTM flow platform, and they are readily scalable when used in
other flow equipment, such as the Uniqsis FlowSynTM system.
It is clear that the incorporation of microfluidic flow chemistry
platforms is very effective device for effecting transformations for
organic synthesis programmes. Advances in this area of science
are developing rapidly, and the use of new, commercially available,
modular reactors has an important role to play in their future
applications.16
2. (a) Ley, S. V.; Baxendale, I. R. Chimia 2008, 63, 162–168; (b) Jaehnisch, K.;
Hessel, V.; Loewe, H.; Baerns, M. Angew. Chem., Int. Ed. 2004, 43, 406–446; (c)
Ley, S. V.; Baxendale, I. R. Nat. Rev. Drug Discov. 2002, 1, 573–586.
3. (a) Baumann, M.; Baxendale, I. R.; Ley, S. V.; Nikbin, N.; Smith, C. D.; Tierney, J.
Org. Biomol. Chem. 2008, 6, 1577–1586; (b) Baumann, M.; Baxendale, I. R.; Ley,
S. V. Synlett 2008, 2111–2114; (c) Griffiths-Jones, C. M.; Hopkin, M. D.; Jönssen,
D.; Ley, S. V.; Tapolczay, D. J.; Vickerstaffe, E.; Ladlow, M. J. Comb. Chem. 2007, 9,
422–430; (d) Baumann, M.; Baxendale, I. R.; Ley, S. V.; Smith, C. D.; Tranmer, G.
K. Org. Lett. 2006, 8, 5231–5234; (e) Saaby, S.; Baxendale, I. R.; Ley, S. V. Org.
Biomol. Chem. 2005, 3, 3365–3368.
4. (a) Knudsen, K. R.; Holden, J.; Ley, S. V.; Ladlow, M. Adv. Synth. Catal. 2007, 349,
535–538; (b) Smith, C. D.; Baxendale, I. R.; Tranmer, G. K.; Baumann, M.; Smith,
S. C.; Lewthwaite, R. A.; Ley, S. V. Org. Biomol. Chem. 2007, 5, 1562–1568; (c)
Smith, C. J.; Iglesias-Sigüenza, F. J.; Baxendale, I. R.; Ley, S. V. Org. Biomol. Chem.
2007, 5, 2758–2761; (d) Baxendale, I. R.; Griffiths-Jones, C. M.; Ley, S. V.;
Tranmer, G. K. Chem. Eur. J. 2006, 12, 4407–4416.
5. (a) Baumann, M.; Baxendale, I. R.; Ley, S. V.; Nikbin, N.; Smith, C. D. Org. Biomol.
Chem. 2008, 6, 1587–1593; (b) Smith, C. D.; Baxendale, I. R.; Lanners, S.;
Hayward, J. J.; Smith, S. C.; Ley, S. V. Org. Biomol. Chem. 2007, 5, 1559–1561; (c)
Hornung, C. H.; Mackley, M. R.; Baxendale, I. R.; Ley, S. V. Org. Process Res. Dev.
2007, 11, 399–405; (d) Nikbin, N.; Ladlow, M.; Ley, S. V. Org. Process Res. Dev.
2007, 11, 458–462.
6. Baxendale, I. R.; Ley, S. V.; Smith, C. D.; Tranmer, G. K. Chem. Commun. 2006,
4835–4837.
7. (a) Baxendale, I. R.; Griffiths-Jones, C. M.; Ley, S. V.; Tranmer, G. K. Synlett 2006,
427–430; (b) Baxendale, I. R.; Deeley, J.; Griffiths-Jones, C. M.; Ley, S. V.; Saaby,
S.; Tranmer, G. K. Chem. Commun. 2006, 2566–2568.
8. Hofmann, A. W. Ber 1881, 14, 2725–2736.
9. Satoh, N.; Akiba, T.; Yokoshima, S.; Fukuyama, T. Angew. Chem., Int. Ed. 2007, 46,
5734–5736.
10. (a) Greshock, T. J.; Funk, R. L. Org. Lett. 2006, 8, 2643–2645; (b) Poullennec, K.
G.; Romo, D. J. Am. Chem. Soc. 2003, 125, 6344–6345.
12. The reactions were optimized for the addition of methanol but not ethanol, and
consequently in these cases the yields were somewhat lower.
13. No attempt was made to further generalize the substrate tolerance although
we anticipate that a reasonably wide range of inputs would be compatible with
these reaction conditions.
14. Huang, X.; Seid, M.; Keillor, J. W. J. Org. Chem. 1997, 62, 4495–7496.
16. For
a selection of key references, please see: (a) Odedra, A.; Geyer, K.;
Gustafsson, T.; Gilmour, R.; Seeberger, P. H. Chem. Commun. 2008, 3025–3027;
(b) Gustafsson, T.; Ponten, F.; Seeberger, P. H. Chem. Commun. 2008, 1100–
1102; (c) Baxendale, I. R.; Ley, S. V.; Smith, C. D.; Tamborini, L.; Voica, A.-F. J.
Comb. Chem. 2008, 10, 851–857; (d) Burguete, M. I.; Cornejo, A.; García-
Verdugo, E.; Gil, M. J.; Luis, S. V.; Mayoral, J. A.; Martínez-Merino, V.; Sokolova,
M. J. Org. Chem. 2007, 72, 4344–4350; (e) Solodenko, W.; Kunz, U.; Jas, G.;
Kirschning, A. Synthesis 2007, 583–589; (f) Hamper, B. C.; Tesfu, E. Synlett 2007,
14, 2257–2261; (g) Bonfils, F.; Cazaux, I.; Hodge, P.; Caze, C. Org. Biomol. Chem.
2006, 4, 493–497; (h) Jones, R. V.; Godorhazy, L.; Varga, N.; Szalay, D.; Urge, L.;
Darvas, F. J. Comb. Chem. 2006, 8, 110–116; (i) France, S.; Bernstein, D.;
Weatherwax, A.; Lectka, T. Org. Lett. 2005, 7, 3009–3012; (j) Bernstein, D.;
France, S.; Wolfer, J.; Lectka, T. Tetrahedron: Asymmetry 2005, 16, 3481–3483;
(k) Desai, B.; Kappe, C. O. J. Comb. Chem. 2005, 7, 641–643; (l) Saaby, S.;
Knudsen, K. R.; Ladlow, M.; Ley, S. V. Chem. Commun. 2005, 23, 2909–2911; (m)
Jönsson, D.; Warrington, B. H.; Ladlow, M. J. Comb. Chem. 2004, 6, 584–595; (n)
Kobayashi, J.; Mori, Y.; Okamoto, K.; Akiyama, R.; Ueno, M.; Kitamori, T.;
Kobayashi, S. Science 2004, 304, 1305–1308; (o) Solodenko, W.; Wen, H.; Leue,
S.; Stuhlmann, F.; Sourkouni-Argirusi, G.; Jas, G.; Schönfeld, H.; Kunz, U.;
Kirschning, A. Eur. J. Org. Chem. 2004, 17, 3601–3610; (p) Kunz, U.; Schönfeld,
H.; Kirschning, A.; Solodenko, W. J. Chromatogr., A 2003, 241–249; (q) Burguete,
M. I.; García-Verdugo, E.; Vicent, M. J.; Luis, S. V.; Pennemann, H.; von
Keyserling, N. G.; Martens, J. Org. Lett. 2002, 4, 3947–3950; (r) Kirschning, A.;
Altwicker, C.; Dräger, G.; Harders, J.; Hoffmann, N.; Hoffmann, U.; Schönfeld,
H.; Solodenko, W.; Kunz, U. Angew. Chem., Int. Ed. 2001, 40, 3995–3998; (s)
Haswell, S. J.; O’Sullivan, B.; Styring, P. Lab Chip 2001, 1, 164–166.
Acknowledgements
We gratefully acknowledge financial support from the EPRSC (to
I.R.B), the BP endowment (to S.V.L.), University of Camerino and
MIUR-Italy (to A. Palmieri), CSIRO Capability Development Fund
(CDF) (to A. Polyzos) and the Advion Flow Research Fellowship.
References and notes
1. For example, see: (a) Baxendale, I. R.; Hayward, J. J.; Lanners, S.; Ley, S. V.;
Smith, C. D. In Microreactors in Organic Synthesis and Catalysis; Wirth, T., Ed.;
Wiley-VCH: Weinheim, 2008; pp 84–122; (b) Yoshida, J.; Nagaki, A.; Yamada, T.