GOLD(I) N-HETEROCYCLIC CARBENE AND TRIPHENYLPHOSPHINE COMPLEXES
9 of 10
[2] L. Kelland, Nat. Rev. Cancer 2007, 7, 573.
[3] C. F. Shaw, Chem. Rev. 1999, 99, 2589.
[4] I. Ott, Coord. Chem. Rev. 2009, 253, 1670.
[5] R. Rubbiani, L. Salassa, A. de Almeida, A. Casini, I. Ott,
ChemMedChem 2014, 9, 1205.
4 | CONCLUSIONS
A series of gold(I) complexes of ligand ibuprofen-alkynyl
(but-3-yn-1-yl 2-(4-isobutylphenyl)propanoate, LE) with
N-heterocyclic carbene (LC: 1,3-dimethylimidazol-
2-ylidene) and triphenylphosphine (PPh3) ligands with
formula (LE)Au (LC) (complex 1) and (LE)Au (PPh3)
(complex 2) were synthesized and fully characterized.
Interaction of complex 1 or 2 with cysteine (HCys) was
studied by experimental and theoretical methods, which
showed that ligand LC or PPh3 was replaced by cysteine.
The compounds were investigated for their anticancer
activity against MCF-7, MDAMB 231 breast cancer cells,
and HT-29 colon cancer cells and compared with cis-
platin as reference drug. The complex 2 showed more
cytotoxic activity than complex 1. The complex 2 was 4.2,
3.7, and 1.7 fold more active than cisplatin against HT-
29, MDA-MB-231, MCF-7 cancer cell line, respectively.
The activity of cytosolic TrxR (TrxR1) is inhibited by the
complexes 1 and 2 with IC50 values in the nanomolar
range and more active than auranofin. Also, the com-
plexes 1 and 2 were 10 times more active than auranofin
about against mitochondrial thioredoxin reductase
(TrxR2). For both TrxR1 and TrxR2, complex 2 was more
active than complex 1. However, 1 and 2 were less active
against glutathione reductase (GR) than auranofin that
confirmed the inhibiting ability of complexes 1 and 2 for
purified TrxR. Both complexes 1 and 2 increase the ROS
levels to 5.1 and 8.3 folds as compared with the control
and more than antimycin as positive control. Therefore,
the mechanism of anticancer activity of the complexes
1 and 2 can be as strong inhibition of thioredoxin reduc-
tase with the increased ROS generation. From molecular
design perspective, a relationship between the σ-donor
ability of the isolated ligands and the cytotoxicity of the
gold complex is suggested.
[6] T. S. Reddy, S. H. Privér, V. V. Rao, N. Mirzadeh,
S. K. Bhargava, Dalton Trans. 2018, 47, 15312.
[7] T. Marzo, D. Cirri, C. Gabbiani, T. Gamberi, F. Magherini,
A. Pratesi, A. Guerri, T. Biver, F. Binacchi, M. Stefanini,
A. Arcangeli, L. Messori, ACS Med. Chem. Lett. 2017, 8, 997.
[8] A. De Nisi, C. Bergamini, M. Leonzio, G. Sartor, R. Fato,
M. Naldi, M. Monari, N. Calonghi, M. Bandini, Dalton Trans.
2016, 45, 1546.
[9] T. Zou, C. T. Lum, C. N. Lok, J. J. Zhang, C. M. Che, Chem.
Soc. Rev. 2015, 44, 8765.
[10] B. Bertrand, A. Casini, Dalton Trans. 2014, 43, 4209.
[11] M. J. McKeage, L. Maharaj, S. J. Berners-Price, Coord. Chem.
Rev. 2002, 232, 127.
[12] M. A. Bennett, S. K. Bhargava, K. D. Griffiths,
G. B. Robertson, W. A. Wickramsinghe, A. C. Willis, Angew.
Chem. Int. Ed. Engl. 1987, 26, 258.
[13] M. Porchia, M. Pellei, M. Marinelli, F. Tisato, F. Del Bello,
C. Santini, Eur. J. Med. Chem. 2018, 146, 709.
[14] W. Liu, K. Bensdorf, M. Proetto, U. Abram, A. Hagenbach,
R. Gust, J. Med. Chem. 2011, 54, 8605.
[15] Ö. Karaca, V. Scalcon, S. M. Meier-Menches, R. Bonsignore,
J. M. J. L. Brouwer, F. Tonolo, A. Folda, M. P. Rigobello,
F. E. Kühn, A. Casini, Inorg. Chem. 2017, 56, 14237.
[16] W. Liu, R. Gust, Coord. Chem. Rev. 2016, 329, 191.
[17] L. Oehninger, R. Rubbiani, I. Ott, Dalton Trans. 2013, 42,
3269.
[18] J. L. Hickey, R. A. Ruhayel, P. J. Barnard, M. V. Baker,
S. J. Berners-Price, A. Filipovska, J. Am. Chem. Soc. 2008, 130,
12570.
[19] A. Bindoli, M. P. Rigobello, G. Scutari, C. Gabbiani, A. Casini,
L. Messori, Coord. Chem. Rev. 2009, 253, 1692.
[20] S. Urig, K. Fritz-Wolf, R. Reau, C. Herold-Mende, K. Toth,
E. Davioud-Charvet, K. Becker, Angew. Chem. 2006, 118, 1915.
Angew. Chem. Int. Ed. 2006, 45, 1881.
[21] A. Pratesi, C. Gabbiani, E. Michelucci, M. Ginanneschi,
A. M. Papini, R. Rubbiani, I. Ott, L. Messori, J. Inorg. Biochem.
2014, 136, 161.
ACKNOWLEDGEMENTS
[22] M. Mora, M. C. Gimeno, R. Visbal, Chem. Soc. Rev. 2019,
48, 447.
The authors would like to thank the School of Chemistry,
National University of Ireland (NUI), Galway for general
support and the Laboratory of Quantum and Computa-
tional Chemistry at the Sofia University for the provided
computing resources.
[23] M. Fereidoonnezhad, H. R. Shahsavari, E. Lotfi,
M. Babaghasabha, M. Fakhri, Z. Faghih, Z. Faghih,
M. H. Beyzavi, Appl. Organomet. Chem. 2018, 32, e4200.
[24] O. Dada, D. Curran, C. O'Beirne, H. Müller-Bunz, X. Zhu,
M. Tacke, J. Organomet. Chem. 2017, 840, 30.
[25] M.
S.
Fereidoonnezhad,
Abedanzadeh, A.
H.
Yazdani,
Ahmadi
A.
Mirsadeghi,
Alamdarlou,
NOTES
All authors declare no conflict of interest.
M. Babaghasabha, Z. Almansaf, Z. Faghih, Z. McConnell,
H. R. Shahsavari, M. H. Beyzavi, New J. Chem. 2019, 43,
13173.
ORCID
ꢀ
ꢀ
[26] M. D. Đurovic, Ž. D. Bugarcˇic, R. van Eldik, Coord. Chem. Rev.
2017, 338, 186.
REFERENCES
[27] S. Kumar, S. Garg, R. P. Sharma, P. Venugopalan, L. Tenti,
L. Ferretti, L. Nivelle, M. Tarpic, E. Guillon, New J. Chem.
2017, 41, 8253.
[1] B. Rosenberg, L. Van Camp, J. E. Trosko, V. H. Mansour,
Nature 1969, 222, 385.