March 2002
383
[M]ϩ. Anal. Calcd for C10H14O2: C, 72.26; H, 8.48%. Found: C, 72.40; H,
8.50%.
4) RE(OTf)3 is also effective in thio etherification.
Experimental
4-(tert-Butoxymethyl)phenol (13): mp 62—65 °C (ether–n-hexane); IR
1
(KBr) 3280, 1620, 1520, 1250, 1040 cmϪ1; H-NMR (CDCl3) d: 1.29 (9H,
Melting points were measured with a Yanagimoto micro melting point ap-
paratus. IR spectra were recorded on a JASCO FT/IR-350. 1H-NMR spectra
[tetramethylsilane (TMS) as an internal standard] were recorded on a Varian
VXR-500 spectrometer. Chemical shifts are given in ppm. Mass spectra
were measured on a VG-70SE spectrometer. Elemental analyses were car-
ried out using a Yanaco MT-5. For thin layer chromatography (TLC) analy-
s), 4.36 (2H, s), 5.12 (1H, br s), 6.72 (2H, d, Jϭ8.5 Hz), 7.16 (2H, d,
Jϭ8.5 Hz). FAB-MS (positive ion mode) m/z: 180 [M]ϩ. High resolution
FAB-MS. Found: m/z 180.1186 [M]ϩ. Calcd for C11H16O2: 180.1150.
4-Hydroxybenzyloxy-2-butanone (14): Colorless oil. IR (neat) 3320,
2880, 1700, 1620, 1520, 1230 cmϪ1; 1H-NMR (CDCl3) d: 2.18 (3H, s), 2.71
(2H, t, Jϭ6.5 Hz), 3.71 (2H, t, Jϭ6.5 Hz), 4.42 (2H, s), 5.06 (1H, br s), 6.76
(2H, d, Jϭ8.5 Hz), 7.17 (2H, d, Jϭ8.5 Hz). FAB-MS (positive ion mode)
m/z: 194 [M]ϩ.
ses throughout this work, Merck precoated TLC plates (silica-gel 60 F254
)
were used. HPLC analysis for the determination of yield was carried out on
a SHIMADZU LC-6A and an UV detector of 254 nm. GPC analysis was
carried out on a TOSOH HLC-8020. Silica-gel column chromatography was
performed using Merck Kieselgel 60 (70—230 mesh).
All of the RE(OTf)3 were prepared from the corresponding rare earth
metal oxide (Soekawa Chemicals Co., Ltd.) and trifluoromethanesulfonic
acid (Kanto Chemicals Co., Ltd.) in water according to the literature.7)
Reagents used in this work were commercially available.
4-(Butylthiomethyl)phenol (15): Yellow oil. IR (KBr) 3360, 1620,
1520 cmϪ1 1H-NMR (CDCl3) d: 0.88 (3H, t, Jϭ15.0 Hz), 1.37 (2H, sext,
;
Jϭ7.5 Hz), 1.54 (2H, quint, Jϭ7.5 Hz), 2.41 (2H, t, Jϭ15.0 Hz), 3.65 (2H,
s), 4.86 (1H, br s), 6.77 (2H, d, Jϭ8.5 Hz), 7.16 (2H, d, Jϭ8.5 Hz). FAB-MS
(positive ion mode) m/z: 197 [Mϩ1]ϩ. High resolution FAB-MS. Found: m/z
197.1003 [Mϩ1]ϩ. Calcd for C11H16OS: 197.1000.
A Typical Experimental Procedure for the RE(OTf)3 Catalyzed Ben-
zyl-Etherification Typical experimental procedure is described for the re-
action of 4-hydroxybenzyl alcohol with 2-isopropoxyethanol; Yb(OTf)3 was
prepared from the ytterbium (III) oxide (Yb2O3) and trifluoromethanesul-
fonic acid.7) A mixture of Yb(OTf)3 (124 mg, 0.2 mmol), 2-isopropoxy-
ethanol (11.6 ml, 100 mmol) and 4-hydroxybenzyl alcohol (2.48 g, 20 mmol)
in acetonitrile (20 ml) was stirred at 80 °C for 5 h. After dilution with water,
the mixture was extracted with ethyl acetate. After removal of the solvents,
the crude products were purified by column chromatography on silica-
gel using ether–dichloromethane (1 : 10) as eluent to afford 4-[(2-iso-
propoxyethoxy)methyl]phenol (2) (85% yield) and bis(4-hydroxybenzyl)
ether (3) (4% yield). The aqueous layer was concentrated in vacuo to give a
crystalline residue, which was finally heated at 180 °C for 48 h in vacuo to
afford 89 mg (72%) of Yb(OTf)3 as colorless crystals. The recovered
Yb(OTf)3 was reused in the next reaction.
4-(tert-Butylthiomethyl)phenol (16): mp 94.5—95.5 °C (ether–n-hexane);
1
IR (KBr) 3200, 1520 cmϪ1; H-NMR (CDCl3) d: 1.34 (9H, s), 3.71 (2H, s),
4.76 (1H, br s), 6.75 (2H, d, Jϭ8.5 Hz), 7.2 (2H, d, Jϭ8.5 Hz). FAB-MS
(positive ion mode) m/z: 197 [Mϩ1]ϩ. High resolution FAB-MS. Found: m/z
197.1003 [Mϩ1]ϩ. Calcd for C11H16OS: 197.1000.
Acknowledgement We are grateful to the SC-NMR Laboratory of
Okayama University for high-field NMR experiments.
References and Notes
1) a) Smith M. B., March J., “Advanced Organic Chemistry,” 5th edition,
Wiley-Interscience, New York, 2001, pp. 479—480; b) Larock R. C.,
“Comprehensive Organic Transformations,” 2nd edition, Wiley-Inter-
science, New York, 1999, pp. 897—900.
2) a) Kim S., Chung K. N., Yang S., J. Org. Chem., 52, 3917—3919
(1987); b) Mico A. D., Margarita R., Piancatelli G., Tetrahedron Lett.,
36, 2679—2680 (1995); c) Salehi P., Iranpoor N., Behbahani F. K.,
Tetrahedron, 54, 943—948 (1998); d) Ooi T., Ichikawa H., Itagaki Y.,
Maruoka K., Heterocycles, 52, 575—578 (2000).
3) For example see: a) Kobayashi S., Hachiya I., Yamanoi Y., Bull. Chem.
Soc. Jpn., 67, 2342—2344 (1994); b) Hachiya I., Kobayashi S., J. Org.
Chem., 58, 6958—6966 (1993); c) Manabe K., Oyamada H., Sugita
K., Kobayashi S., ibid., 64, 8054—8057 (1999); d) Kobayashi S., Ishi-
tani H., Hachiya I., Araki M., Tetrahedron, 50, 11623—11633 (1994).
4) a) Kawada A., Mitamura S., Kobayashi S., J. Chem. Soc., Chem. Com-
mun., 1993, 1157—1158; b) Idem, Synlett, 1994, 545—546; c) Idem,
J. Chem. Soc., Chem. Commun., 1996, 183—184; d) Kawada A., Mita-
mura S., Matsuo J., Tsuchiya T., Kobayashi S., Bull. Chem. Soc. Jpn.,
73, 2325—2333 (2000).
5) a) Sharma G. V. M., Mahalingam A. K., J. Org. Chem., 64, 8943—
8944 (1999); b) Sharma G. V. M., Prasad T. R., Mahalingam A. K.,
Tetrahedron Lett., 42, 759—761 (2001).
6) We have already applied for Japanese patents for the rare earth metal
triflates catalyzed benzyl-etherification. Kawada A., Tomiku T.,
Ishikawa S., JP Patent 2000-204055 (2000) [Chem. Abstr,. 133,
104871 (2000)].
7) a) Forsberg J. H., Spaziano V. T., Balasubramanian T. M., Liu G. K.,
Kinsley S. A., Duckworth C. A., Poteruca J. J., Brown P. S., Miller J.
L., J. Org. Chem., 52, 1017—1021 (1987); b) Thom K. F., U.S. Patent
3615169 (1971) [Chem. Abstr., 76, 5436a (1972)].
8) It was already known that Sc(OTf)3 is the strongest Lewis acid among
rare earth metal triflates. a) Tsuruta H., Yamaguchi K., Imamoto T., J.
Chem. Soc., Chem. Commun., 1999, 1703—1704; b) Kobayashi S.,
Hachiya I., Ishitani H., Araki M., Synlett, 1993, 472—474; c)
Kobayashi S., Hachiya I., Araki M., Ishitani H., Tetrahedron Lett., 34,
3755—3758 (1993); d) Kobayashi S., Ishitani H., Nagayama S., Syn-
thesis, 1995, 1195—1202; e) Kobayashi S., Eur. J. Org. Chem., 1999,
15—17; see also Refs. 4b and 4d.
4-[(2-Isopropoxyethoxy)methyl]phenol (2): Yellow oil. IR (KBr) 3300,
1620, 1520, 1220, 1080 cmϪ1; 1H-NMR (CDCl3) d: 1.18 (6H, d, Jϭ6.0 Hz),
3.58—3.67 (5H, m), 4.47 (2H, s), 5.70—5.75 (1H, br s), 6.74 (2H, d,
Jϭ8.5 Hz), 7.16 (2H, d, Jϭ8.5 Hz). High resolution FAB-MS. Found: m/z
210.1255 [M]ϩ. Calcd for C12H18O3: 210.1270.
Bis(4-hydroxybenzyl) Ether (3)10): mp 84—85 °C (ether–n-hexane) (lit.
63—65 °C); IR (KBr) 3200, 1620, 1520, 1250, 1060 cmϪ1 1H-NMR
;
(CD3OD) d: 4.39 (4H, s), 4.87 (2H, s), 6.75 (4H, d, Jϭ8.5 Hz), 7.15 (4H, d,
Jϭ8.5 Hz), FAB-MS (positive ion mode) m/z: 230 [M]ϩ. Anal. Calcd for
C14H14O3·1/2H2O: C, 70.27; H, 6.31%. Found: C, 70.39; H, 6.15%.
4-(Methoxymethyl)phenol (4)10): mp 82—83 °C (ether–n-hexane) (lit.
81—83 °C); IR (KBr) 3240, 1620, 1520, 1070 cmϪ1 1H-NMR (CDCl3) d:
;
3.37 (3H, s), 4.39 (2H, s), 5.37 (1H, s), 6.77 (2H, d, Jϭ8.5 Hz), 7.16 (2H, d,
Jϭ8.5 Hz). FAB-MS (positive ion mode) m/z: 138 [M]ϩ. Anal. Calcd for
C8H10O2: C, 69.54; H, 7.29%. Found: C, 69.62; H, 7.35%.
2-(Methoxymethyl)phenol (6)11): Colorless oil. IR (CHCl3) 3400, 3000,
2920, 1600, 1490, 1240, 1080 cmϪ1; 1H-NMR (CDCl3) d: 3.45 (3H, s), 4.67
(2H, s), 6.85 (1H, dt, Jϭ7.5, 1.5 Hz), 6.90 (1H, dd, Jϭ7.5, 1.5 Hz), 7.02
(1H, dd, Jϭ7.5, 1.5 Hz), 7.22 (1H, dt, Jϭ7.5, 1.5 Hz), 7.45 (1H, br s). FAB-
MS (positive ion mode) m/z: 138 [M]ϩ.
1-Methoxy-4-(methoxymethyl)benzene (9)12): Colorless oil. IR (CHCl3)
1
3000, 2920, 2840, 1620, 1520, 1240, 1080 cmϪ1; H-NMR (CDCl3) d: 3.35
(3H, s), 3.80 (3H, s), 4.39 (2H, s), 6.88 (2H, d, Jϭ8.5 Hz), 7.26 (2H, d,
Jϭ8.5 Hz). Anal. Calcd for C9H12O2: C, 71.02; H, 7.94%. Found: C, 71.03;
H, 7.85%.
4-(2-Methoxyethoxymethyl)phenol (10)13): Yellow oil. IR (KBr) 3300,
1
1610, 1510, 1240, 1080 cmϪ1; H-NMR (CDCl3) d: 3.39 (3H, s), 3.60 (4H,
s), 4.47 (2H, s), 5.74 (1H, br s), 6.74 (2H, d, Jϭ8.5 Hz), 7.16 (2H, d,
Jϭ8.5 Hz). FAB-MS (positive ion mode) m/z: 182 [M]ϩ. Anal. Calcd for
C10H14O3·1/5H2O: C, 64.63; H, 7.81%. Found: C, 64.80; H, 7.64%.
(4-Allyloxymethyl)phenol (11): Colorless oil. IR (KBr) 3300, 1610, 1510,
9) Guindon et al. reported that ZnI2 as Lewis acid worked efficiency for the
preparation of thioethers from thiols and alcohols. Guindon Y., Frenette
R., Fortin R., Rokach J., J. Org. Chem., 48, 1357—1359 (1983).
10) Torii S., Inokuchi T., Horike H., Kuroda H., Uneyama K., Bull. Chem.
Soc. Jpn., 60, 2173—2188 (1987).
1
1240, 1080 cmϪ1; H-NMR (CDCl3) d: 4.02 (2H, ddd, Jϭ5.5, 2.0, 1.0 Hz),
4.45 (2H, s), 5.21 (1H, ddd, Jϭ10.0, 3.0, 1.0 Hz), 5.30 (1H, ddd, Jϭ17.0,
3.0, 2.0 Hz), 5.59 (1H, br s), 5.95 (1H, ddt, Jϭ17.0, 10.0, 5.5 Hz), 6.76 (2H,
d, Jϭ8.5 Hz), 7.16 (2H, d, Jϭ8.5 Hz). FAB-MS (positive ion mode) m/z: 164
[M]ϩ. Anal. Calcd for C10H12O2·1/10H2O: C, 72.35; H, 7.40%. Found: C,
72.14; H, 7.37%.
11) Taguchi H., Yoshida I., Yamasaki K., Kim I. H., Chem. Pharm. Bull.,
29, 55—62 (1981).
(4-Isopropoxymethyl)phenol (12): mp 61.5—62.5 °C (ether–n-hexane);
12) Sparfel D., Baranne-Lanfont J., Coung N. K., Capdevielle P., Maumy
M., Tetrahedron, 46, 793—802 (1990).
13) Saá J. M., Llobera A., García-Raso A., Costa A., Deyá P. M., J. Org.
1
IR (KBr) 3200, 1620, 1520, 1040 cmϪ1; H-NMR (CDCl3) d: 1.12 (6H, d,
Jϭ6.0 Hz), 3.69 (1H, sept, Jϭ6.0 Hz), 4.43 (2H, s), 5.23 (1H, s), 6.75 (2H,
d, Jϭ8.5 Hz), 7.16 (2H, d, Jϭ8.5 Hz). FAB-MS (positive ion mode) m/z: 166
Chem., 53, 4263—4273 (1988).