mides,11 the cyclization of 2-chlorobenzonitriles with ꢀ-keto
esters,12 intramolecular Diels-Alder reactions,13 Wittig
reactions,14 as well as photochemical reactions.6b,15 Although
these methods are effective, some starting materials are not
readily available or are difficult to prepare. Recently,
transition-metal-based catalysis has often been utilized for
the synthesis of various heterocyclic compounds;16 however,
only limited examples applicable to the synthesis of iso-
quinolin-1(2H)-ones have appeared.17 Recently, great progress
for copper-catalyzed Ullmann couplings have been made,18
and we have also developed some copper-catalyst systems
that were used in N-arylations.19 Some N-heterocycles have
been constructed via the Ullmann couplings by us20 and other
research groups.21 Herein, we report an efficient one-pot
copper-catalyzed approach to isoquinolin-1(2H)-one deriva-
tives via cascade reactions of o-halobenzamides with ꢀ-keto
esters under mild conditions.
As shown in Table 1, 2-bromobenzamide (1a) and ethyl
acetoacetate (2a) were chosen as the model substrates to
Table 1. Copper-Catalyzed Coupling of 2-Bromobenzamide
with Ethyl Acetoacetate: Optimization of the Reaction
Conditionsa
(6) (a) Saeed, A.; Ashraf, Z. Pharm. Chem. J. 2008, 42, 277, and
references therein. (b) Guastavino, J. F.; Barolo, S. M.; Rossi, R. A. Eur.
J. Org. Chem. 2006, 17, 3898, and references therein. (c) Simonsen, K. B.;
Kehler, J.; Juhl, K.; Khanzhin, N.; Nielsen, S. M. Patent WO2008131779A1.
(d) Wong, Y. H.; Ho, M. K. C.; Hu, Y. Q.; New, D. C.; He, X. X.; Pang,
H. H. Patent WO2008092292A1. (e) Plettenburg, O.; Lorenz, K.; Goerlitzer,
J.; Loehn, M. Patent WO2008077555A2. (f) Asano, Y.; Kitamura, S.; Ohra,
T.; Itoh, F.; Kajino, M.; Tamura, T.; Kaneko, M.; Ikeda, S.; Igata, H.;
Kawamoto, T.; Sogabe, S.; Matsumoto, S.; Tanaka, T.; Yamaguchi, M.;
Kimura, H.; Fukumoto, S. Bioorg. Med. Chem. 2008, 16, 4699.
(7) (a) Matsui, T.; Sugiura, T.; Nakui, H.; Iguch, S.; Shigeoka, S.;
Tukedu, H.; Odagaki, T.; Ushio, Y.; Ohmoto, K.; Iwamani, M.; Yamazaki,
S.; Arai, T.; Kawamura, M. J. Med. Chem. 1992, 35, 3307. (b) Li, S. W.;
Nair, M. G.; Edwards, D. M.; Kisluick, R. L.; Gaument, Y.; Dev, I. K.;
Duch, D. S.; Humphreys, J.; Smith, G. K.; Ferone, R. J. Med. Chem. 1991,
34, 2746.
entry catalyst
base
solvent
temp /time yield (%)b
1
2
3
4
CuI
CuI
CuI
-
Cs2CO3 dioxane 25 °C/16 h
Cs2CO3 dioxane 80 °C/16 h
Cs2CO3 dioxane
Cs2CO3 dioxane
trace
80
120 °C/16 h
80 °C /36 h
80 °C/16 h
80 °C/16 h
80 °C/16 h
80 °C/16 h
80 °C/16 h
80 °C/16 h
80 °C/16 h
80 °C/16 h
80 °C/16 h
82
33
trace
29c
67
51
72
63
79
5
6
7
8
CuI
CuI
CuI
CuI
CuI
CuI
CuI
CuBr
CuCl2
-
dioxane
Cs2CO3 dioxane
K3PO4
K2CO3
NaOEt
Cs2CO3 toluene
Cs2CO3 DMF
dioxane
dioxane
ethanol
9
(8) Gutillaumel, J.; Boccara, N.; Demersemann, P.; Royer, R. J. Chem.
Soc., Chem. Commun. 1998, 1604.
10
11
12
13
(9) Jagtap, P. G.; Baloglu, E.; Southan, G.; Williams, W.; Roy, A.;
Nivorozhkin, A.; Landrau, N.; Desisto, K.; Salzman, A. L.; Szabo, C. Org.
Lett. 2005, 7, 1753.
Cs2CO3 dioxane
Cs2CO3 dioxane
76
38
(10) Otha, S.; Kimoto, S. Tetrahedron Lett. 1975, 16, 2279.
(11) (a) Fisher, L. E.; Muchowski, J. M.; Clark, R. D. J. Org. Chem.
1992, 57, 2700. (b) Davis, S. E.; Church, A. C.; Griffith, C. L.; Beam,
C. F. Synth. Commun. 1997, 27, 2961.
a Reaction conditions: nitrogen atmosphere, 2-bromobenzamide (0.5
mmol), ethyl acetoacetate (0.75 mmol), catalyst (0.05 mmol), base (1 mmol),
solvent (3 mL). b Isolated yield. c In the absence of nitrogen atmosphere.
(12) Snow, R. J.; Butz, T.; Hammach, A.; Kapadia, S.; Morwick, T. M.;
Prokopowicz, A. S.; Takahashi, H.; Tan, J. D.; Tschantza, M. A.; Wang,
X. J. Tetrahedron Lett. 2002, 43, 7553.
(13) Gutierrz, A. J.; Shea, K. J.; Svoboda, J. J. J. Org. Chem. 1989, 54,
4335.
optimize reaction conditions including catalysts, bases,
solvents, and temperature. First, the reaction temperature was
investigated by using 0.1 equiv of CuI as the catalyst and 2
equiv of Cs2CO3 as the base (relative to amount of 1a) in
dioxane (entries 1-3). The yield of the target product was
greatly improved as the reaction temperature was increased,
and higher yields were provided at more than 80 °C (entries
2 and 3). The coupling efficiency was evidently decreased
in the absence of catalyst (entry 4), and only a trace amount
of product was observed without addition of base (entry 5).
The yield of target product decreased and byproduct in-
creased in the absence of nitrogen atmosphere (entry 6).
Other bases, K3PO4 and K2CO3, were screened at 80 °C
(entries 7 and 8), and the results showed that Cs2CO3
provided the highest yield (entry 2). Sodium ethoxide was
also an effective base in ethanol (entry 9). The effect of
solvent was investigated (entries 2 and 9-11), and toluene
(14) Epsztajin, J.; Grzelak, R.; Jozwiak, A. Synthesis 1996, 1212.
(15) (a) Griesbeck, A. G.; Hirt, J.; Kramer, W.; Dallakian, P. Tetrahedron
1998, 54, 3169. (b) Weidner-Wells, M. A.; Oda, K.; Mazzochi, P. H.
Tetrahedron 1997, 53, 3475
.
(16) For reviews, see: (a) Varela, J. A.; Saa´, C. Chem. ReV. 2003, 103,
3787. (b) Nakamura, I.; Yamamoto, Y. Chem. ReV. 2004, 104, 2127. (c)
Alonso, F.; Beletskaya, I. P.; Yus, M. Chem. ReV. 2004, 104, 3079. (d)
Cacchi, S.; Fabrizi, G. Chem. ReV. 2005, 105, 2873.
(17) (a) Cherry, K.; Duchene, A.; Thibonnet, J.; Parrain, L.; Abarbri,
M. Synthesis 2005, 2349. (b) Kajita, Y.; Matsubara, S.; Kurahashi, T. J. Am.
Chem. Soc. 2008, 130, 6058. (c) Hudlicky, T.; Olivo, H. F. J. Am. Chem.
Soc. 1992, 114, 9694. (d) Grigg, R.; Sridharan, V.; Xu, L. H. J. Chem.
Soc., Chem. Commun. 1995, 1903. (e) Miura, T.; Yamauchi, M.; Murakami,
M. Org. Lett. 2008, 10, 3085. (f) Zheng, Z.; Alper, H. Org. Lett. 2008, 10,
4903. (g) Batchu, V. R.; Barange, D. K.; Kumar, D.; Sreekanth, B. R.;
Vyas, K.; Reddy, E. A.; Pal, M. Chem. Commun. 2007, 1966.
(18) For recent reviews on copper-catalyzed Ullmann couplings, see:
(a) Kunz, K.; Scholz, U.; Ganzer, D. Synlett 2003, 2428. (b) Ley, S. V.;
Thomas, A. W. Angew. Chem., Int. Ed. 2003, 42, 5400. (c) Beletskaya,
I. P.; Cheprakov, A. V. Coord. Chem. ReV. 2004, 248, 2337. (d) Evano,
G.; Blanchard, N.; Toumi, M. Chem. ReV. 2008, 108, 3054, and references
cited therein.
(19) (a) Rao, H.; Fu, H.; Jiang, Y.; Zhao, Y. J. Org. Chem. 2005, 70,
8107. (b) Rao, H.; Jin, Y.; Fu, H.; Jiang, Y.; Zhao, Y. Chem. Eur. J. 2006,
12, 3636. (c) Jiang, D.; Fu, H.; Jiang, Y.; Zhao, Y. J. Org. Chem. 2007,
72, 672. (d) Jiang, Q.; Jiang, D.; Jiang, Y.; Fu, H.; Zhao, Y. Synlett 2007,
72, 1836. (e) Guo, X.; Rao, H.; Fu, H.; Jiang, Y.; Zhao, Y. AdV. Synth.
Catal. 2006, 348, 2197.
(21) For recent studies on the synthesis of N-heterocycles through
Ullmann-type couplings, see: (a) Martin, R.; Rodr´ıguez, R.; Buchwald, S. L.
Angew. Chem., Int. Ed. 2006, 45, 7079. (b) Evindar, G.; Batey, R. A. J.
Org. Chem. 2006, 71, 1802. (c) Bonnaterre, F.; Bois-Choussy, M.; Zhu, J.
Org. Lett. 2006, 8, 4351. (d) Zou, B.; Yuan, Q.; Ma, D. Angew. Chem.,
Int. Ed. 2007, 46, 2598. (e) Yuan, X.; Xu, X.; Zhou, X.; Yuan, J.; Mai, L.;
Li, Y. J. Org. Chem. 2007, 72, 1510. (f) Wang, B.; Lu, B.; Jiang, Y.; Zhang,
Y.; Ma, D. Org. Lett. 2008, 10, 2761.
(20) (a) Liu, X.; Fu, H.; Jiang, Y.; Zhao, Y. Angew. Chem., Int. Ed.
2009, 48, 348. (b) Huang, C.; Fu, Y.; Fu, H.; Jiang, Y.; Zhao, Y. Chem.
Commun. 2008, 6333. (c) Yang, D.; Fu, H.; Hu, L.; Jiang, Y.; Zhao, Y. J.
Org. Chem. 2008, 73, 7841.
2470
Org. Lett., Vol. 11, No. 11, 2009