LETTER
CaCl2- or MgCl2-Catalyzed Allylic Oxidations
2619
Table 3 Allylic Oxidation of Six Substratesa,10
Acknowledgment
We thank the Science Research Program of Guizhou Huang Guo
Shu Tobacco Group for financial support.
Entry
Substrate Catalyst
Time
(h)
Product Yield
(%)b
1
2
1a
1b
1c
1d
1e
1f
CaCl2
4
2a
2b
2c
2d
2e
2f
66
References and Notes
CaCl2
5
65
(1) (a) Pearson, A. J.; Chen, Y. S.; Hsu, S. Y.; Ray, T.
Tetrahedron Lett. 1984, 25, 1235. (b) Muzart, J.
Tetrahedron Lett. 1987, 28, 4665. (c) Sakthivel, A.;
Dapurkar, S. E.; Selvam, P. Appl. Catal., A 2003, 246, 283.
(d) Harre, M.; Haufe, R.; Nickisch, K.; Weinig, P.;
Weinmann, H.; Kinney, W. A.; Zhang, X. Org. Process Res.
Dev. 1998, 2, 100. (e) Salvador, J. A. R.; Melo, M. L. S.;
Neves, A. S. C. Tetrahedron Lett. 1997, 38, 119.
(f) Arsenou, E. S.; Koutsourea, A. I.; Fousteris, M. A.;
Nikolaropoulos, S. S. Steroids 2003, 68, 407. (g) Allal, B.
A.; Firdoussi, L. E.; Allaround, S.; Karim, A.; Castanet, Y.;
Mortreux, A. J. Mol. Catal. A: Chem. 2003, 200, 177.
(h) Salvador, J. A. R.; Clark, J. H. Chem. Commun. 2001,
33. (i) Yu, J. Q.; Corey, E. J. Org. Lett. 2002, 4, 2727.
(j) Yu, J. Q.; Corey, E. J. J. Am. Chem. Soc. 2003, 125, 3232.
(2) Crich, D.; Zou, Y. Org. Lett. 2004, 6, 775.
3
CaCl2
2
55c
58
4
CaCl2
5
5
CaCl2
1.5
1
52c
45c
65
6
CaCl2
7
1a
1b
1c
1d
1e
1f
MgCl2·6H2O
MgCl2·6H2O
MgCl2·6H2O
MgCl2·6H2O
MgCl2·6H2O
MgCl2·6H2O
4
2a
2b
2c
2d
2e
2f
8
5
63
9
2
54c
60
10
11
12
5
1.5
1
53c
42c
(3) Catino, A. J.; Forslund, R. E.; Doyle, M. P. J. Am. Chem.
Soc. 2004, 126, 13622.
(4) (a) Anzaldi, M.; Sottofattori, E.; Dusatti, F.; Ferro, M.; Pani,
M.; Balbi, A. Eur. J. Med. Chem. 2000, 35, 797. (b) Zeng,
F.; Negishi, E. I. Org. Lett. 2001, 3, 719. (c) Pommier, A.;
Stepanenko, V.; Jarowicki, K.; Kocienski, P. J. J. Org.
Chem. 2003, 68, 4008.
a Conditions: substrate (1 mmol), CaCl2 or MgCl2·6H2O (20 mol%),
TBHP (5 equiv), MeCN (6 mL), 60 °C.
b Isolated yields.
c TBHP (3 equiv).
(5) (a) Aasen, A. J.; Kimland, B.; Enzell, C. R. Acta Chem.
Scand. 1973, 27, 2107. (b) Aasen, A. J.; Hlubucek, J. R.;
Enzell, C. R. Acta. Chem. Scand. 1974, 28, 285. (c) Davis,
D. L.; Stevens, K. L.; Jurd, L. J. Agric. Food. Chem. 1976,
24, 187. (d) Kaiser, R.; Lamparsky, D. Helv. Chim. Acta
1978, 61, 2328. (e) Becher, E.; Albrecht, R.; Bernhard, K.;
Leuenberger, H. G. W.; Mayer, H.; Muller, R. K.; Schuep,
W.; Wagner, H. P. Helv. Chim. Acta 1981, 64, 2419.
(f) Kaiser, R. US Pat. 4,963,193, 1990. (g) Kim, B. T.; Min,
Y. K.; Asami, T.; Park, N. K.; Kwon, O. Y.; Cho, K. Y.;
Yoshida, S. Tetrahedron Lett. 1997, 38, 1797. (h) Young, J.
J.; Jung, L. J.; Cheng, K. M. Tetrahedron Lett. 2000, 41,
3415.
(6) (a) Sheldon, R. A.; Kochi, J. K. Metal-Catalyzed Oxidations
of Organic Compounds; Academic Press: New York, 1981.
(b) Metal-Catalyzed Selective Oxidations. In Peroxide
Chemistry – Mechanistic and Preparative Aspects of
Oxygen Transfer; Adam, W., Ed.; Wiley: Weinheim, 2000,
301.
complex 4 reacted with TBHP to produce water and com-
plex 5. The complex transferred t-BuOO· to the allylic
radical 6 to form tert-butyl peroxyether 7 and regenerate
the catalyst (Ca2+ or Mg2+). Finally, rapid decomposition
of 7 yielded oxidation product enone 2a.
In summary, we have developed a novel catalytic allylic
oxidation of ionone-like dienes based on CaCl2 or MgCl2,
which offers an efficient and facile way to synthesize
dienones in moderate to good yields. The use of the alkali-
earth-metal catalyst, which is inexpensive and non-toxic,
could open a new area in allylic oxidation reactions.
Efforts are currently underway in our laboratories to
elucidate the details of the reaction mechanism.
O
O
MeCN
O
OH2
t-BuOO
t-BuOOH
2+
M
t-BuOH
2a
7
t-BuOOH
t-BuOH
t-BuOO·
t-BuO·
O
O
M = Ca, Mg
3
3
t-BuOO·
.
.
.
OH
NCMe
t-BuOO
MeCN
1a
6
2+
M
2+
M
4
5
H2O
t-BuOOH
Scheme 2 Mechanistic proposal for the allylic oxidation catalyzed by Lewis acid CaCl2 or MgCl2·6H2O
Synlett 2006, No. 16, 2617–2620 © Thieme Stuttgart · New York