C O M M U N I C A T I O N S
and S10). Excitation of this band gave rise to naphthalene-centered
emission with λmax ) 340 nm (Figure S14). Eu(III) emission was
also clearly evident upon excitation of the naphthalene antennae
or the pyridyl moieties (Figures S13 and S14). The total lumines-
cence spectrum for Eu2:23 (Figure 2) demonstrates the sensitization
of the 5D0 excited state by the six antennae and the deactivation to
the 7FJ (J ) 0-4) states, with narrow emission bands occurring at
590, 593, 613, 647, and 693 nm respectively. The fluorescence
excitation spectra of the antennae in MeOH and 1:1 (v/v) CH3CN/
CHCl3 also clearly demonstrated that both complexes successfully
Figure 3. (A) Overall changes in the Eu(III) emission of 2 in 1:1 (v/v)
CH3CN/CHCl3 using Job’s method of continuous variations. (B) Job’s plot
analyses for ∆J ) 1, 2, and 4, showing the formation of Eu2:23.
5
sensitized the D0 excited state (Figures S15-S18). The presence
Acknowledgment. We thank SFI, HEA (PRTLI Cycle 3 CSCB
funding), and TCD for financial support and Prof. Paul E. Kruger
(University of Christchurch) and Dr. Sally Plush for their help.
of the 5D0 f 7F0 band (Figure 2) in the emission spectrum suggests
that the local symmetry at the Eu(III) centers is C3 rather than D3,
which is the symmetry of the dimetallic helixes as a whole.
1
However, the H NMR spectra also suggest that D3 symmetry is
Supporting Information Available: Synthesis and characterization
of all novel compounds, Figures S1-S24, and Tables S1 and S2. This
favored on the NMR time scale. Figure 2 also shows the CPL
spectra of Eu2:13 and Eu2:23, which have opposite signs and equal
magnitudes, confirming the enantiomeric nature of Eu2:13 and Eu2:
23, which is driven by asymmetric induction from 1 and 2. The
large values of the dissymmetry factor 2∆I/I (e.g., -0.23 for
the higher-energy component of the 593 nm transition of Eu2:13)
have the same sign and almost identical magnitude as those for
the corresponding monomeric complexes previously developed by
us.10 This implies not only that the absolute configurations of Eu2:
13 and Eu2:23 are the same as those of the corresponding monomers
(i.e., Eu2:13 has the Λ,Λ and Eu2:23 the ∆,∆ absolute configuration)
but also that the degrees of twist of the ligators away from
octahedral geometry must be very similar (within about (2°) for
the dimetallic and monomeric Eu(III) complexes. Thus, the CPL
spectra show that dimetallic Eu(III) triple-stranded homochiral
helicates are formed in solution for Eu2:13 and Eu2:23.11
References
(1) Kay, E. R.; Leigh, D. A.; Zerbetto, F. Angew. Chem., Int. Ed. 2007, 46,
72. Meyer, C. D.; Joiner, C. S.; Stoddart, J. F. Chem. Soc. ReV. 2007, 30,
1705. Nitschke, J. R. Acc. Chem. Res. 2007, 40, 103. Fujita, M.; Tominaga,
M.; Hori, A.; Therrien, B. Acc. Chem. Res. 2005, 38, 371.
(2) Goldup, S. M.; Leigh, D. A.; Lusby, P. J.; McBurney, R. T.; Slawin,
A. M. Z. Angew. Chem., Int. Ed. 2008, 47, 6999. Prikhod’ko, A. I.; Durola,
F.; Sauvage, J. P. J. Am. Chem. Soc. 2008, 130, 448. Chichak, K. S.;
Cantrill, S. J.; Pease, A. R.; Chui, S.-H.; Cave, G. W. V.; Atwood, J. L.;
Stoddart, J. F. Science 2004, 304, 1308.
(3) Deiters, E.; Song, B.; Chauvin, A. S.; Vandevyver, C. D. B.; Gumy, F.;
Bunzli, J. C. G. Chem.sEur. J. 2009, 15, 885. Leonard, J. P.; Nolan, C. B.;
Stomeo, F.; Gunnlaugsson, T. Top. Curr. Chem. 2007, 281, 1. Gunnlaugs-
son, T.; Stomeo, F. Org. Biomol. Chem. 2007, 5, 1999. Pandya, S.; Yu, J.;
Parker, D. Dalton Trans. 2006, 2757.
(4) Bu¨nzli, J.-C. G. Acc. Chem. Res. 2006, 39, 53. Bu¨nzli, J.-C. G.; Piguet, C.
Chem. Soc. ReV. 2005, 34, 1048.
(5) Chauvin, A. S.; Comby, S.; Song, B.; Vandevyver, C. D. B.; Bu¨nzli, J.-
C. G. Chem.sEur. J. 2008, 14, 1726. (a) Albrecht, M.; Osetska, O.;
Fro¨hlich, R.; Bu¨nzli, J.-C. G.; Aebischer, A.; Gumy, F.; Hamacek, J. J. Am.
Chem. Soc. 2007, 129, 14178.
(6) Canard, G.; Koeller, S.; Bernardinelli, G.; Piguet, C. J. Am. Chem. Soc.
2008, 130, 1025. Riis-Johannessen, T.; Dupont, N.; Canard, G.; Bernar-
dinelli, G.; Hauser, A.; Piguet, C. Dalton Trans. 2008, 3661. Senegas, J. M.;
Koeller, S.; Bernardinelli, G.; Piguet, C. Chem. Commun. 2005, 2235.
(7) Examples include: Albrecht, M.; Liu, Y.; Zhu, S. S.; Schalley, C. A.;
Fro¨hlich, R. Chem. Commun. 2009, 1195. Gregolinski, J.; Starynowicz,
P.; Hua, K. T.; Lunkley, J. L.; Muller, G.; Lisowski, J. J. Am. Chem. Soc.
2008, 130, 17761. Hamacek, J.; Bernardinelli, G.; Filinchuk, Y. Eur.
J. Inorg. Chem. 2008, 3419. Ronson, T. K.; Adams, H.; Harding, L. P.;
Pope, S. J. A.; Sykes, D.; Faulkner, S.; Ward, M. D. Dalton Trans. 2007,
1006. Bonsall, S. D.; Houcheime, M.; Straus, D. A.; Muller, G. Chem.
Commun. 2007, 3676. Hoffart, D. J.; Loeb, S. J. Angew. Chem., Int. Ed.
2005, 44, 901. Argent, S. P.; Adams, H.; Riis-Johannessen, T.; Jeffery,
J. C.; Harding, L. P.; Mamula, O.; Ward, M. D. Inorg. Chem. 2005, 45,
3905. Bretonniere, Y.; Mazzanti, M.; Pecaut, J.; Olmstead, M. M. J. Am.
Chem. Soc. 2002, 124, 9012. Bretonniere, Y.; Mazzanti, M.; Wietzke, R.;
Pecaut, J. Chem. Commun. 2000, 1543. Lessmann, J. J.; Horrocks, W. D.
Inorg. Chem. 2000, 39, 3114.
Figure 2. Luminescence spectrum of Eu2:23 (black) and CPL spectra (×10)
of Eu2:13 (blue) and Eu2:23 (red) in MeOH. The ∆J ) 0 band is expanded.
(8) Se´ne´shal-David, K.; Leonard, J. P.; Plush, S. E.; Gunnlaugsson, T. Org.
Lett. 2006, 8, 2727. Se´ne´shal-David, K.; Pope, S. J. A.; Quinn, S.; Faulkner,
S.; Gunnlaugsson, T. Inorg. Chem. 2006, 45, 10040.
(9) Massue, J.; Quinn, S. E.; Gunnlaugsson, T. J. Am. Chem. Soc. 2008, 130,
6900. Plush, S. E.; Gunnlaugsson, T. Dalton Trans. 2008, 3801. Leonard,
J. P.; dos Santos, C. M. G.; Plush, S. E.; McCabe, T.; Gunnlaugsson, T.
Chem. Commun. 2007, 129. Nonat, A. M.; Quinn, S. J.; Gunnlaugsson, T.
Inorg. Chem. 2009, 48, 4646. Nonat, A. M.; Harte, A. J.; Sénéshal-David,
Leonard, J. P.; Gunnlaugsson, T. Dalton Trans. 2009, 4703.
The formation of Eu2:13 and Eu2:23 was also investigated in
1:1 (v/v) CH3CN/CHCl3 by observing the changes in their absorp-
tion and Eu(III) emission spectra upon variation of the amount of
Eu(III)(SO3CF3)3 at fixed concentrations of 1 and 2 (10 µM) after
24 h of equilibration. Significant changes were observed in the
absorption spectra, which were red-shifted to 320 nm (Figures S19
and S20), and in the Eu(III)-centered emission (Figures S21 and
S22), which was “switched on” for both systems within the addition
of ∼0.7 equiv of Eu(III) upon formation of both Eu2:13 and Eu2:
23. The 3:2 stoichiometry of these helicates was further confirmed
using Job’s method of continuous variations, where ꢀmax ) 0.6 was
determined from both the absorption (Figures S23 and S24) and
the Eu(III) emission (Figure 3).
(10) Leonard, J. P.; Jensen, P.; McCabe, T.; O’Brien, J. E.; Peacock, R. D.;
Kruger, P. E.; Gunnlaugsson, T. J. Am. Chem. Soc. 2007, 129, 10986.
(11) Albrecht, M.; Schmid, S.; Dehn, S.; Wickleder, C.; Zhang, S.; Bassett,
A. P.; Pikramenou, Z.; Frohlich, R. New J. Chem. 2007, 31, 1755. Cantuel,
M.; Bernardinelli, G.; Muller, G.; Riehl, J. P.; Piguet, C. Inorg. Chem.
2004, 43, 1840.
(12) Hamuro, Y.; Geib, S. J.; Hamilton, A. D. J. Am. Chem. Soc. 1997, 119,
10587.
(13) The Tb(III) complex of 1 was also formed. The 1H NMR spectrum (Figure
S3) showed the formation of a single species.
(14) Eu2L3 can be formed either as rac isomers (ΛΛ and ∆∆) or as a meso
isomer (Λ∆). In the meso form, the methylene protons would be
diastereotopic and give rise to two doublets in the 1H NMR spectrum. See:
Goetz, S.; Kruger, P. E. Dalton Trans. 2006, 1277.
In summary, we have developed novel, enantiomerially pure
dimetallic lanthanide luminescent triple-stranded helicates using
Eu(III)-directed synthesis. We are in the process of evaluating their
properties and developing related f-based helical structures.
JA9032204
9
J. AM. CHEM. SOC. VOL. 131, NO. 28, 2009 9637