Organic & Biomolecular Chemistry
Communication
1
1 E. A. Kersteen and R. T. Raines, Antioxid. Redox Signaling,
Conclusions
2003, 5, 413–424.
We have designed, synthesized, and characterized novel 12 G. Tian, S. Xiang, R. Noiva, W. J. Lennarz and
organocatalysts that enhance the efficiency of oxidative protein H. Schindelin, Cell, 2006, 124, 61–73.
folding. Moreover, we have demonstrated that increasing the 13 C. W. Gruber, M. Cemazar, B. Heras, J. L. Martin and
hydrophobicity of the catalysts has a marked effect on their D. J. Craik, Trends Biochem. Sci., 2006, 31, 455–464.
catalytic efficacy. The production of proteins that contain 14 A. Y. Denisov, P. Maattanen, C. Dabrowski, G. Kozlov,
disulfide bonds by recombinant DNA technology often leads
D. Y. Thomas and K. Gehring, FEBS J., 2009, 276, 1440–
1449.
6
4,65
to the aggregation of misfolded proteins.
These aggregates
must be reduced, denatured, and solubilized to enable proper 15 E. A. Kersteen, S. R. Barrows and R. T. Raines, Biochemistry,
6
6
folding. Approximately 20% of all human proteins and many
proteins of high pharmaceutical relevance
2005, 44, 12168–12178.
6
7,68
contain at least 16 P. T. Chivers, M. C. A. Laboissière and R. T. Raines, EMBO
one disulfide bond between cysteine residues. For example,
J., 1996, 15, 2659–2667.
antibodies contain at least 12 intrachain and 4 interchain 17 A. Holmgren, J. Biol. Chem., 1979, 254, 9627–9632.
6
9
disulfide bonds, and there are >300 distinct antibodies in 18 J. C. Edman, L. Ellis, R. W. Blacher, R. A. Roth and
7
0
clinical development, including ∼30 antibody–drug conju-
W. J. Rutter, Nature, 1985, 317, 267–270.
19 N. J. Darby and T. E. Creighton, Biochemistry, 1995, 34,
3576–3587.
7
1
7,16
gates. The ability to mimic the essential function of PDI
in a small molecule could have a favorable impact on the
production of antibodies and other biologics, and usher in a 20 H. F. Gilbert, Adv. Enzymol., 1990, 63, 69–172.
new genre of organocatalysts for oxidative protein folding.
21 P. T. Chivers, K. E. Prehoda and R. T. Raines, Biochemistry,
997, 36, 4061–4066.
2 H. C. Hawkins and R. B. Freedman, Biochem. J., 1991, 275,
35–339.
3 J. Lundstrom and A. Holmgren, Biochemistry, 1993, 32,
6649–6655.
1
2
2
3
Acknowledgements
K.A.A. was supported by a predoctoral fellowship from the
PhRMA Foundation and by Molecular and Cellular Pharma- 24 C. Hwang, A. J. Sinskey and H. F. Lodish, Science, 1992,
cology Training Grant T32 GM008688 (NIH). This work was 257, 1496–1502.
supported by grant R01 GM044783 (NIH). NMR spectra were 25 K. W. Walker, M. M. Lyles and H. F. Gilbert, Biochemistry,
obtained at NMRFAM, which is supported by grant P41
GM103399 (NIH).
1996, 35, 1972–1980.
26 K. W. Walker and H. F. Gilbert, J. Biol. Chem., 1997, 272,
8
845–8848.
7 M. M. Lyles and H. F. Gilbert, Biochemistry, 1991, 30, 619–
25.
2
2
6
Notes and references
8 W. J. Lees, Curr. Opin. Chem. Biol., 2008, 12, 740–
1
Biochemistry of the SH Group: The Occurence, Chemical
745.
Properties, Metabolism and Biological Function of Thiols and 29 K. J. Woycechowsky, K. D. Wittrup and R. T. Raines, Chem.
Disulfides, ed. P. C. Jocelyn, London, U.K., 1972. Biol., 1999, 6, 871–879.
Oxidative Folding of Peptides and Proteins, ed. J. Buchner 30 M. S. Willis, J. K. Hogan, P. Prabhakar, X. Liu,
2
and L. Moroder, The Royal Society of Chemistry,
Cambridge, UK, 2009.
K. Tsai, Y. Wei and T. Fox, Protein Sci., 2005, 14, 1818–
1826.
3
4
M. Lindahl, A. Mata-Cabana and T. Kieselbach, Antioxid. 31 K. J. Woycechowsky, B. A. Hook and R. T. Raines, Biotech-
Redox Signaling, 2011, 14, 2581–2642. nol. Prog., 2003, 19, 1307–1314.
O. B. Oka and N. J. Bulleid, Biochim. Biophys. Acta, 2013, 32 K. J. Woycechowsky and R. T. Raines, Biochemistry, 2003,
1
833, 2425–2429.
42, 5387–5394.
5
6
C. B. Anfinsen, Science, 1973, 181, 223–230.
A. S. Robinson, V. Hines and K. D. Wittrup, Biotechnology,
33 J. D. Gough, J. M. Gargano, A. E. Donofrio and W. J. Lees,
Biochemistry, 2003, 42, 11787–11797.
34 J. D. Gough and W. J. Lees, J. Biotechnol., 2005, 115, 279–
290.
35 J. D. Gough and W. J. Lees, Bioorg. Med. Chem., 2005, 15,
777–781.
1
994, 12, 381–384.
7
8
M. C. A. Laboissière, S. L. Sturley and R. T. Raines, J. Biol.
Chem., 1995, 270, 28006–28009.
Prolyl Hydroxylase, Protein Disulfide Isomerase, and Other
Structurally Related Proteins, ed. N. A. Guzman, Marcel 36 J. D. Gough, E. J. Barrett, Y. Silva and W. J. Lees, J. Biotech-
Dekker, New York, NY, 1998. nol., 2006, 125, 39–47.
K. J. Woycechowsky and R. T. Raines, Curr. Opin. Chem. 37 J. Beld, K. J. Woycechowsky and D. Hilvert, Biochemistry,
Biol., 2000, 4, 533–539. 2008, 47, 6985–6987.
0 R. B. Freedman, P. Klappa and L. W. Ruddock, EMBO Rep., 38 J. Beld, K. J. Woycechowsky and D. Hilvert, Biochemistry,
002, 3, 136–140. 2009, 48, 4662–4662.
9
1
2
This journal is © The Royal Society of Chemistry 2014
Org. Biomol. Chem., 2014, 12, 8598–8602 | 8601