ORGANIC
LETTERS
2012
Vol. 14, No. 8
2030–2033
Phosphorylating Reagent-Free Synthesis of
50-Phosphate Oligonucleotides by Controlled
Oxidative Degradation of Their 50-End
ꢀ
Corinne Sallamand, Audrey Miscioscia, Remy Lartia,* and Eric Defrancq
ꢀ
Departement de Chimie Moleculaire, UMR CNRS 5250, Universite Joseph Fourier,
BP 53, 38041 Grenoble Cedex 9, France
ꢀ
ꢀ
Received March 2, 2012
ABSTRACT
The 50-phosphorylated oligonucleotides (50-pONs) are currently synthesized using expensive and sensitive modified phosphoramidite reagents.
In this work, a simple, cost-effective, efficient, and automatable method is presented, based on the controlled oxidation of the 50-terminal alcohol
followed by a β-elimination reaction. The latter reaction leads to the removal of the terminal 50-nucleoside and subsequent formation of the
50-phosphate moiety. Thus, chemical phosphorylation of oligonucleotides (DNA or RNA) is achieved without using modified phosphoramidites.
Oligonucleotides containing a 50-terminal phosphate
group have found applications in several domains, ranging
from PCR processes,1 gene construction,2 cloning,3
mutagenesis,4 to conjugation reactions.5 The small inter-
fering RNAs (siRNAs), which have demonstrated great
promise in therapeutics for selective inhibition of gene
expression are short 50-pONs.6 The 50-pONs are thus an
important part of the biologist0s toolbox. Such oligonucleo-
tides are routinely prepared by automated synthesis by using
on-support reactions with a modified phosphoramidite
reagent. The importance of this modification is highlighted
by the impressive number of reagents devoted to chemical
phosphorylation that have been developed,7ꢀ9 and some of
them are also commercially available.8ꢀ10
However, despite this wide choice, these reagents are
closely related since they all belong to the phosphoramidite
family. Hence, they share common disadvantages: poor
(7) (a) Celebuski, J. E.; Chan, C.; Jones, R. A. J. Org. Chem. 1992, 57,
5535. (b) van Heden Noort, G. J.; Verhagen, C. P.; van der Horst, M. G.;
Overkleeft, H. S.; van der Marel, G. A.; Filippov, D. V. Org. Lett. 2008,
10, 4461. (c) Meyer, A.; Bouillon, C.; Vidal, S.; Vasseur, J.-J.; Morvan,
F. Tetrahedron Lett. 2006, 47, 8867. (d) Ausın, C.; Grajkowski, A.;
(1) Barany, F. Proc. Natl. Acad. Sci. U. S. A. 1991, 88, 189.
(2) Wosnick, M. A.; Barnett, R. W.; Vicentini, A. M.; Erfle, H.;
Elliott, R.; Sumner-Smith, M.; Mantei, N.; Davies, R. W. Gene 1987, 60,
115.
(3) Sambrook, J.; Fritsch, F.; Maniatis, T. Molecular Cloning: A
Laboratory Manual; Cold Spring Harbor Press: Cold Spring Harbor, NY,
1989.
ꢀ
Cieslak, J.; Beaucage, S. L. Org. Lett. 2005, 7, 4201. (e) Leuck, M.; Vagle,
K. E.; Shawn Roach, J.; Wolter, A. Tetrahedron Lett. 2004, 45, 321.
(f) Lartia, R.; Asseline, U. Tetrahedron Lett. 2004, 45, 5949. (g) Thuong,
N. T.; Chassignol, M. Tetrahedron Lett. 1987, 28, 4157. (h) Uhlmann, E.;
Engels, J. Tetrahedron Lett. 1986, 27, 1023. (i) Cooke, L. A.; Frauendorf,
C.; Gıˆlea, M. A.; Holmes, S. C.; Vyle, J. S. Tetrahedron Lett. 2006, 47,
719. (j) Connolly, B. A. Tetrahedron Lett. 1986, 27, 463.
€
(8) Guzaev, A.; Salo, H.; Azhayev, A.; Lonnberg, H. Tetrahedron
1995, 51, 9375.
(4) Fritz, H.-J. DNA Cloning: A Practical Approach; IRL Press:
Oxford, 1985.
(5) Grimm, G. N.; Boutorine, A. S.; Helene, C. Nucleosides, Nucleo-
tides Nucleic Acids 2000, 19, 1943.
(9) Horn, T.; Urdea, M. S. Tetrahedron Lett. 1986, 27, 4705.
(10) (a) Groody, E. US Patent 5,071,074, 1991. (b) Guzaev, A.;
Azhayev, A.; Lonnberg, H. US Patent 5,959,090, 1999. (c) Urdea, M. S. H. T.
US Patent 5, 332,845, 1994. (d) Vagle, K.; Leuck, M.; Wolter, A. U.S. Pat. Appl.
0230047, November 18, 2004.
(6) (a) Hamilton, A. J.; Baulcombe, D. C. Science 1999, 286, 950.
(b) Bernstein, E.; Caudy, A. A.; Hammond, S. M.; Hannon, G. J. Nature
2001, 409, 363. (c) Gaynor, G. W.; Campbell, B. J.; Cosstick, R. Chem.
Soc. Rev. 2010, 39, 4169.
€
r
10.1021/ol300542s
Published on Web 04/05/2012
2012 American Chemical Society