1594
Russ.Chem.Bull., Int.Ed., Vol. 64, No. 7, July, 2015
Lyubimov et al.
2.79—2.85 (m, 1 H, Ha, CH2); 2.90—2.95 (m, 1 H, Hb, CH2);
2.97—3.03 (m, 2 H, N—CH2); 4.03—4.07 (m, 1 H, N—CH);
6.94 (d, 1 H, H(6); indole, JH,H = 8.0 Hz); 7.14 (d, 1 H, H(7),
indole, JH,H = 8.0 Hz); 7.21—7.25 (m, 3 H, oꢀH, pꢀH); 7.26
(s, 1 H, H(4), indole); 7.31 (t, 2 H, mꢀH, JH,H = 7.4 Hz); 8.28
(s, 1 H, NH). 13C{1H} NMR (CDCl3), : 21.00 (C(4), cyclohexyl);
21.60 (Me); 21.85 (C(3), cyclohexyl); 29.76 (C(2), cyclohexyl);
36.56 CH2); 46.92 (N—CH2); 52.42 (N—CH); 110.71 (C(7),
indole); 111.48 (C(3), indole); 118.14 (C(4), indole); 123.26
(C(6), indole); 126.48 (mꢀC); 127.65 (C); 128.37 (C(5), indole);
128.65 (oꢀC); 128.96 (pꢀC); 134.22 (N—C); 139.79 (ipsoꢀC);
140.70 (C(2), indole). Found (%): C, 82.94; H, 7.88; N, 9.11.
C21H24N2. Calculated (%): C, 82.85; H, 7.95; N, 9.20.
Experimental
NMR spectra were recorded on a Bruker Avance 600 spectroꢀ
meter (600.15 MHz). Chemical shifts in 1H and 13C spectra were
determined relative to the residual signals of chloroformꢀd. 2D
homonuclear correlation spectra COSY were recorded to obtain
information about homonuclear protonꢀproton interaction. Diꢀ
rect protonꢀcarbon correlations were recorded using a pulse proꢀ
cedure HSQC. Remote protonꢀcarbon interactions were regisꢀ
tered using a pulse procedure HMBC. Optical rotation for the
catalysis products was measured on a Perkin—Elmer 341 polaꢀ
rimeter. Hydrogenation was carried out in 10ꢀmL stainless steel
autoclaves. (Sa)ꢀ2ꢀ(Diethylamino)dinaphtho[2,1ꢀd:1´,2´ꢀf]ꢀ
[1,3,2]dioxaphosphepine (L1),12 (Sa)ꢀ2ꢀ(morpholino)dinaphꢀ
tho[2,1ꢀd:1´,2´ꢀf][1,3,2]dioxaphosphepine (L2),12 (Sa)ꢀ2ꢀ(phenꢀ
oxy)dinaphtho[2,1ꢀd:1´,2´ꢀf][1,3,2]dioxaphosphepine (L3),13
[Ir(COD)Cl]2,14 6ꢀmethylꢀ2,3,4,9ꢀtetrahydroꢀ1Hꢀcarbazolꢀ1ꢀ
one (1)15 were obtained according to the procedures described
in the literature. Conversion was measured using 1H NMR data.
Spectral characteristics of 1ꢀbenzylaminoꢀ6ꢀmethylꢀ2,3,4,9ꢀ
tetrahydroꢀ1Hꢀcarbazole (2a) agree with the literature data.6
Optical yields were determined by HPLC on an Agilent HPꢀ1100
chromatograph. Compound 2a was isolated under the following
conditions: a Chiralcel ASꢀH column (UV, = 219 nm, hexꢀ
ane—isopropyl alcohol—diethylamine = 98 : 2 : 0.1, 1 mL min–1).
The retention times for enantiomers of 2a are 10.0 min for
(+)ꢀisomer and 11.0 min for (–)ꢀisomer. Compound 2b was
isolated under the following conditions: a Chiralcel ODꢀH colꢀ
umn (UV, = 219 nm, hexane—isopropyl alcohol—diethylꢀ
amine = 90 : 10 : 0.1, 1 mL min–1). The retention times for enanꢀ
tiomers of 2b are 9.4 min ((+)ꢀisomer) and 11.0 min ((–)ꢀisomer).
Asymmetric direct reductive amination of 6ꢀmethylꢀ2,3,4,9ꢀ
tetrahydroꢀ1Hꢀcarbazolꢀ1ꢀone (general procedure). Dimeric
[Ir(COD)Cl]2 (2.5 mg, 0.0037 mmol) and a corresponding ligand
(0.0149 mmol) (see Table 1) or two ligands (0.0074 mmol each)
(see Tables 2 and 3) were dissolved in CH2Cl2 (0.4 mL) and the
mixture was magnetically stirred for 5 min in an autoclave
(10 mL). If necessary (see Tables), I2 (19 mg, 0.074 mmol) was
added, and the mixture was stirred for another 10 min. The
solvent was evaporated in vacuo, 6ꢀmethylꢀ2,3,4,9ꢀtetrahydroꢀ
1Hꢀcarbazolꢀ1ꢀone (1) (147 mg, 0.74 mmol), amine (0.89 mol),
Ti(O—Pri)4 (0.33 mL, 1.11 mmol), and a corresponding solvent
(3 mL) (see Tables 1—3) were added to the catalyst obtained.
The reaction mixture was stirred in an autoclave filled with hyꢀ
drogen, at the pressure and the temperature listed in Tables 1—3.
The reaction mixture was diluted with ethyl acetate (3 mL),
followed by the addition of water (4 mL) and centrifuging the
precipitate of titanium oxide at the rate of 3000 rpm for 15 min.
The organic phase was passed through a short layer of silica gel
with subsequent evaporation of the solvent in vacuo. The comꢀ
position of the reductive amination products were analyzed by
1H NMR and HPLC.
References
1. L. N. Filitis, T. V. Akalaeva, O. Yu. Amel´kin, A. I. Boꢀ
kanov, P. Yu. Ivanov, V. I. Shvedov, Pharm. Chem. J.
(Engl. Transl.), 1988, 22, 780 [Khim. Farm. Zh., 1988,
22, 1217].
2. N. Gulzar, M. Klussmann, Org. Biomol. Chem., 2013,
11, 4516.
3. T. V. Akalaeva, A. I. Bokanov, P. Yu. Ivanov, I. S. Nikolaꢀ
eva, T. V. Pushkina, A. N. Fomina, V. I. Shvedov, Pharm.
Chem. J. (Engl. Transl.), 1989, 23, 231 [Khim. Farm. Zh.,
1989, 23, 299].
4. G.ꢀQ. Lin, Q.ꢀD. You, J.ꢀF. Cheng, Chiral drugs: chemistry
and biological action, Wiley & Sons, Hoboken, 2011.
5. W. Li, X. Zhang, Stereoselective formation of amines, Springꢀ
er, Heidelberg, 2014.
6. S. E. Lyubimov, D. V. Ozolin, P. Yu. Ivanov, K. B. Mayꢀ
orov, V. S. Velezheva, V. A. Davankov, Russ. Chem. Bull.
(Int. Ed.), 2015, 64, 318 [Izv. Akad. Nauk, Ser. Khim.,
2015, 318].
7. Y.ꢀM. He, F.ꢀT. Song, Q.ꢀH. Fan, Top. Curr. Chem., 2014,
343, 145.
8. D.ꢀW. Wang, X.ꢀB. Wang, D.ꢀS. Wang, S.ꢀM. Lu, Y.ꢀG.
Zhou, Y.ꢀX. Li, J. Org. Chem., 2009, 74, 2780.
9. M.ꢀT. Reetz, Angew. Chem., Int. Ed., 2008, 47, 2556.
10. M.ꢀT. Reetz, X. Li, Chem. Commun., 2006, 2159.
11. N. Mrsic, L. Lefort, J. A. F. Boogers, A. J. Minnaard, B. L.
Feringa, J. G. de Vries, Adv. Synth. Catal., 2008, 350, 1081.
12. H. Bernsmann, M. van den Berg, R. Hoen, A. Minnaard,
G. Mehler, M. Reetz, J. De Vries, B. Feringa, J. Org. Chem.,
2005, 70, 943.
13. L. Pignataro, B. Lynikaite, R. Colombo, S. Carboni,
M. Krupicka, U. Piarulli, C. Gennari, Chem. Commun., 2009,
3539.
14. J. L. Herde, J. C. Lambert, C. V. Senoff, Inorg. Synth., 1974,
15, 18.
15. R. Sheng, L. Shen, Y.ꢀQ. Chen, Y.ꢀZ. Hu, Synth. Commun.,
2009, 39, 1120.
1ꢀ(2ꢀPhenylethylamino)ꢀ6ꢀmethylꢀ2,3,4,9ꢀtetrahydroꢀ1Hꢀ
carbazole (2b). 1H NMR (CDCl3), : 1.64—1.71 (m, 1 H, Ha(2),
cyclohexyl); 1.71—1.80 (m, 1 H, Ha(3), cyclohexyl); 1.97—2.03
(m, 1 H, Hb(3), cyclohexyl); 2.15—2.21 (m, 1 H, Hb(2), cycloꢀ
hexyl); 2.42 (s, 3 H, Me); 2.62—2.68 (m, 2 H, H(4), cyclohexyl);
Received April 10, 2015;
in revised form May 13, 2015