b
2
3
.
.
Hudlicky, M. Oxidation in Organic Chemistry. ACS Monograph
No.186, American Chemical Society, Washing DC, 1990.
(a) Mohapatra, S. K.; Selvam, P. J. Catal. 2007, 249, 394-396;(b)
Shen, D.; Miao, C.; Wang, S.; Xia, C.; Sun, W. Org. Lett. 2014,
16, 1108-1111; (c) Modica, E.;Bombieri, G.; Colombo,
D.;Marchini, N.;Ronchetti, F.;Scala, A.;Toma, L. Eur. J. Org.
Chem. 2003, 2964-2971; (d) Bonvin, Y.;Callens, E.;Larrosa, I.;
Henderson, D. A.; Oldham, J.; Burton, A. J.; Barrett, A. G. M.
Org. Lett. 2005, 7, 4549-4552; (e) Vanover, E.; Huang, Y.;Xu, L.
B.; Newcomb, M.; Zhang, R.Org. Lett. 2010, 12, 2246-2249; (f)
Wang, Y.;Kuang, Y.; Wang, Y. Chem. Commun. 2015, 51, 5852-
5855; (g) Peng, H.; Lin, A.; Zhang, Y.; Jiang, H.;Zhou,J.; Cheng,
Y.; Zhu, C.;Hu, H.ACS Catal. 2012, 2, 163-167; (h) Houwer, J.
D.;Tehrani, K. A.; Maes, B. U. W. Angew. Chem. Int. Ed. 2012,
Isolated yield.
products with moderate to good yields between 60% and 81%
Table 2, entries 5–8). 1,2-Diphenylethane (1e), 1,2,3,4-
(
tetrahydronaphthalene (1f), 2,3-dihydro-1H-indene (1g),
isochroman (1h), and 1,3-dihydroisobenzofuran (1i) have two
–
CH – (methylene) groups attached to the benzene ring, but
2
only one benzyl group can be converted to a carbonyl group.
The ethylbenzene derivatives and phenyl propane could be
oxidized to form the corresponding ketones with moderate
yield (Table 2, entries 9–11). These results clearly showed the
generality of the present system.
5
6
1
5
1, 2745-2748;(i) Li, H. R.; Li, Z. P.; Shi, Z. J. Tetrahedron 2009,
5, 1856-1858; j) Jin, C.; Zhang, L.; Su, W. Synlett 2011, 1435-
438; k) Shaabani, A.; Hezarkhani, Z.; Badali, E. RSC Adv. 2015,
, 61759-61774.
A plausible mechanism for the the synthesis of 2 is
depicted in Scheme 2. Initially, the reactions involve the
4
.
(a) Baran, P. S.;Zhong, Y. L. J. Am. Chem. Soc.2001, 123, 3183-
3185; (b) Yang, G. Y.; Zhang, Q. H.; Miao, H.; Tong, X. L.;Xu, J.
Org. Lett. 2005, 7, 263-266; (c) Nechab, M.;Einhorn, C.;Einhorn,
J. Chem. Commun. 2004, 1500-1501; (d) Marwah, P.;Marwah, A.;
Lardy, H. A. Green Chem. 2004, 6, 570-577; (e) Dohi, T.;
Takenaga, N.;Goto, A.; Fujioka, H.; Kita, Y. J. Org. Chem.2008,
73, 7365-7368; (f) Zhang, J. T.; Wang, Z. T.; Wang, Y.; Wan, C.
F.;Zheng, X. Q.; Wang, Z. Y. Green Chem. 2009, 11, 1973-1978;
(g) Collom, S. L.; Bloomfield, A. J.; Anastas, P. T. Ind.
Eng.Chem. Res. 2016, 55, 3308-3312.
2+
oxidation of Co with oxone to generate a
situ. Then the radical reacts with H O to provide
radical. Followed by the reduction of Co with oxone, Co
radical in
7
2
8
3+
2+
7a
is regenerated. The attack of
subsequent α-H atom abstraction forms species A, which
further reacts with
Finally, oxydehydrogenation occurrs, and products (2) are
radical on substrate 1 and
9
radical to afford the intermediate B.
10
5. (a) Hull, J. F.; Balcells, D.; Sauer, E. L. O.; Raynaud, C.; Brudvig,
formed.
G. W.; Crabtree, R.H.; Eisenstein, O. J. Am. Chem. Soc. 2010,
1
2
32, 7605-7616; (b) Thottumkara, P.P.; Vinod, T. K. Org. Lett.
010, 12, 5640-5643; (c) Liu, P.; Liu, Y.; Wong, E. L.; Xiang, S.;
Che, C. Chem. Sci. 2011, 2, 2187-2195; d) Moriyama, K.;
Takemura, M.; Togo, H. Org. Lett. 2012, 14, 2414-2417; e) Cui,
L.; Liu, K.; Zhang, C. Org. Biomol. Chem. 2011, 9, 2258-2265; f)
Adams, A. M.; Bois, J. D. Chem. Sci. 2014, 5, 656-659.
(a) Yi, C. S.; Kwon, K.; Lee, D. W. Org. Lett. 2009, 11, 1567-
6
7
.
.
1
569; (b) Yusubov, M. S.; Zagulyaeva, A. A.; Zhdankin, V. V.
Chem. Eur. J. 2009, 15, 11091-11094; (c) Lee, Y.; Dhuri, S. N.;
Sawant, S. C.; Cho, J.; Kubo, M.; Ogura, T.; Fukuzumi, S.; Nam,
W. Angew. Chem., Int. Ed. 2009, 48, 1803-1806; (d) Zhou, M.;
Schley, N. D.; Crabtree, R. H. J. Am. Chem. Soc.2010, 132,
1
2550-12551.
a) Muller, J. G.; Zheng, P.; Rokita, S. E.; Burrows, C. J. J. Am.
Chem. Soc. 1996, 118, 2320-2325; b) Anipsitakis, G. P.;
Dionysiou, D. D. Environ. Sci. Technol. 2004, 38, 3705-3712.
Ji, F.; Li, C.; Deng, L. Chem. Eng. J. 2011, 178, 239-243.
Han, Q.; Yang, S.; Yang, X.; Shao, X.; Niu, R.; Wang, L. Prog.
Chem. 2012, 24, 144-156.
8
9
.
.
Scheme 2. Proposed mechanism for the synthesis of 2.
1
0. Yin, L.; Wu, J.; Xiao, J.; Cao, S. Tetrahedron Lett. 2012, 53,
418-4421.
4
In summary, a mild and efficient methodology for the
direct oxidation of the benzylic C–H bond was developed in
this study. The reaction can be conducted at room temperature
to provide benzylic carbonyl products with moderate to
excellent yields. These products are important compounds in
the synthesis of pharmaceuticals, agrochemicals, and natural
products.
Acknowledgments
This study was supported by the Natural Science Foundation of
China (No. 21371079). We also thank the Center for
Instrumental Analysis at Jiaxing University, China.
References and notes
1
.
(a) Sheldon, R. A.; Kochi, J. K. Metal-Catalyzed Oxidation of
Organic Compounds, Academic Press, New York, 1981; (b)
Newhouse, T.;Baran, P. S.; Angew. Chem. Int. Ed. 2011, 50, 3362-
3
374.