1-Alkyl-3-methylimidazolium iodides substituted with
a
(Fraunhofer Institute of Applied Polymer Research) for
support during viscosity measurements. Furthermore, V.S.
and H.R. gratefully acknowledge the DFG for financial
support within the priority program SPP 1191.
methyl or ethyl group are synthesized from 1-methylimidazole
and the corresponding alkyl iodide using a 25 wt% excess on
the alkyl halogenide at room temperature. tert-Butyl methyl
ether is used as solvent in the case of methyl iodide and ethyl
iodide because of the high exothermic reaction in these
examples. The volume ratio of the solvent to the alkyl iodide
is 1 : 1. The 1-propyl-3-methylimidazolium iodide is synthesized
using a 5 wt% excess of the propyl iodide in bulk. 1-alkyl-3-
methylimidazolium chlorides substituted with a butyl, hexyl,
octyl or decyl chain are synthesized from 1-methylimidazole
and the corresponding alkyl chloride in bulk at 65 1C in the
case of butyl chloride and hexyl chloride and at 70 1C in the
case of octyl chloride and decyl chloride using 5 wt% excess on
the alkyl chloride. 1-Alkyl-3-methylimidazolium halogenide
obtained and lithium bis(tifluoromethylsulfonylimide) from
Iolitec are separately dissolved in water. The amount of each
starting material is 1 g per 1 ml water. A 5 wt% excess of the
lithium bis(trifluoromethylsulfonylimide) relative to the
necessary stoichiometric amount is used for anion metathesis.
The water solutions are unified under stirring and kept further
stirring for 18 h. After stirring, ethyl acetate or methylene
chloride (500 ml solvent relative to 70 g of the imidazolium
iodide) is added to the water solution. Both solvents result in
similar products. Methylene chloride is preferred because of
phase inversion in the case of ethyl acetate. The organic phase
is separated, washed 8 times with 300 ml water each, and
filtered over sodium sulfate. The solvent is evaporated from
the organic solution in vacuo. The remaining ionic liquid is
dried in vacuo (1–4 mbar) at a temperature between 70 and
90 1C for 3 days. No remaining halide was detected after
addition of a solution of AgNO3 dissolved in a water–acetone
mixture. The water content of these ionic liquids is lower than
1000 ppm.
Notes and references
1 H. Ohno, Electrochemical Aspects of Ionic Liquids, John Wiley &
Sons Inc., Hoboken, New Jersey, 2005; W. A. Henderson,
M. Herstedt, V. G. Young, S. Passerini, H. C. De Long and
P. C. Trulove, Inorg. Chem., 2006, 45, 1412–1414; S.-L. Chou,
J.-Z. Wang, J.-Z. Sun, D. Wexler, M. Forsyth, H.-K. Liu,
D. R. MacFarlane and S.-X. Dou, Chem. Mater., 2008, 20,
7044–7051.
2 S. S. Sekhon, B. S. Lalia, J.-S. Park, C.-S. Kim and K. Yamada,
J. Mater. Chem., 2006, 16, 2256–2265.
3 Z.-S. Wang, N. Koumura, Y. Cui, M. Miyashita, S. Mori and
K. Hara, Chem. Mater., 2009, 21, 2810–2816; N. Cai, J. Zhang,
D. Zhou, Z. Yi, J. Guo and P. Wang, J. Phys. Chem. C, 2009, 113,
4215–4221; A. Mishra, M. K. R. Fischer and P. Bauerle,
Angew. Chem., Int. Ed., 2009, 48, 2474–2499.
4 F. Endres, S. Zein, El Abedin, A. Y. Saad, E. M. Moustafa,
N. Borissenko, W. E. Price, G. G. Wallace, D. R. MacFarlane,
P. J. Newman and A. Bund, Phys. Chem. Chem. Phys., 2008, 10,
2189–2199; H. Itoh, K. Naka and Y. Chujo, J. Am. Chem. Soc.,
2004, 126, 3026–3027; L. Ren, L. Meng, Q. Lu, Z. Fei and
P. J. Dyson, J. Colloid Interface Sci., 2008, 323, 260–266;
R. Bock, Materialwiss. Werkstofftech., 2008, 39(12), 901–906;
¨
R. G. Reddy, J. Phys.: Conf. Ser., 2009, 165, 012076, DOI:
10.1088/1742-6596/165/1/012076.
5 P. Wasserscheid, T. Welton, Ionic Liquids in Synthesis,
Wiley-VCH, 2003; C. E. Song, Chem. Commun., 2004,
1033–1043; N. Paape, W. Wei, A. Bosmann, C. Kolbeck,
¨
F. Maier, H.-P. Steinruck, P. Wasserscheid and P. S. Schulz,
¨
Chem. Commun., 2008, 3867–3869; D. Saha, A. Saha and
B. C. Ranu, Green Chem., 2009, 11, 733–737.
6 P. Kubisa, Prog. Polym. Sci., 2004, 29, 3–12; C. S. Brazel and
R. D. Rogers, Ionic Liquids in Polymer Systems, ACS Symp. Ser.,
913, American Chemical Society, 2005; V. Strehmel,
A. Laschewsky, H. Wetzel and E. Gornitz, Macromolecules,
¨
2006, 39, 923–930; Y. S. Vygodskii, O. A. Melnik,
E. I. Lozinskaya, A. S. Shaplov, I. A. Malyshkina,
N. D. Gavrilova, K. A. Lyssenko, M. Y. Antipin,
D. G. Golovanov, A. A. Korlyukov, N. Ignatev and U.
Welz-Biermann, Polym. Adv. Technol., 2007, 18, 50–63;
V. Strehmel, H. Wetzel, A. Laschewsky, E. Moldenhauer and
T. Klein, Polym. Adv. Technol., 2008, 19, 1383–1390;
The nonionic spin probe 1 was purchased from Sigma-
Aldrich and used as obtained. Synthesis of the spin probes
2–5 is described elsewhere.18–20
Measurements
ESR spectra of 0.05 wt% of each spin probe dissolved in the
ionic liquids were measured in X-band with a CW spectro-
meter ELEXSYS E500 (Bruker) at 9.4 GHz. Rotational
correlation time (t) was calculated from the average rotational
diffusion rate constant, which was determined using the
method of Budil et al. using the model of isotropic viscosity
for the fitting procedure.24 This procedure comprises an
experimental error of about ꢁ5–10% depending on the quality
of the ESR signal. Furthermore, shear rate viscosity measurements
on ionic liquids were carried out using shear rates between
0.1 sꢂ1 and 800 sꢂ1 at 296 K. Data are given at a shear rate of
10 sꢂ1 because viscosity of all ionic liquids investigated is
V. Strehmel, E. Reynaud, H. Wetzel, E. Gornitz and
¨
A. Laschewsky, Macromol. Symp., 2009, 275–276, 242–249.
7 C. P. Fredlake, J. M. Crosthwaite, D. G. Hert, S. N. V. K. Aki and
J. F. Brennecke, J. Chem. Eng. Data, 2004, 49, 954–964;
H. Tokuda, K. Hayamizu, K. Ishii, Md. A. B. H. Susan and
M. Watanabe, J. Phys. Chem. B, 2005, 109, 6103–6110; J. M. S. S.
Esperanca, Z. P. Visak, N. V. Plechkova, K. R. Seddon, H. J. R.
Guedes and L. P. N. Rebelo, J. Chem. Eng. Data, 2006, 51,
2009–2015.
8 T. Linker and M. Schmittel, Radikale und Radikalionen in der
organischen Synthese, Wiley VCH, 1998; R. G. W. Norrish and
R. R. Smith, Nature, 1942, 150, 336–337; E. Trommsdorff,
¨
H. Kohle and P. Lagally, Makromol. Chem., 1948, 1, 169–198;
M. L. Coote, T. P. Davis, B. Klumperman and M. J. Monteiro,
J. M. S. Rev. Macromol. Chem. Phys. C, 1998, 38, 567–593.
9 M. A. M. Noel, R. D. Allendoerfer and R. A. Osteryoung, J. Phys.
Chem., 1992, 96, 2391–2394.
independent on the shear rate at 10 sꢂ1
.
10 A. Kawai, T. Hidemori and K. Shibuya, Chem. Lett., 2004, 33,
1464–1465.
11 R. G. Evans, A. J. Wain, C. Hardacre and R. G. Compton,
ChemPhysChem, 2005, 6, 1035–1039.
12 A. Kawai, T. Hidemori and K. Shibuya, Chem. Phys. Lett., 2005,
414, 378–383.
13 A. Kawai, T. Hidemori and K. Shibuya, Mol. Phys., 2006, 104,
1573–1579.
Acknowledgements
We gratefully acknowledge A. Laschewsky for the use of
laboratory equipment, H. Wetzel (Fraunhofer Institute of
Applied Polymer Research) for water analysis using the
Karl Fischer Method, and E. Gornitz and K. Blumel
¨
¨
ꢀc
This journal is the Owner Societies 2010
Phys. Chem. Chem. Phys., 2010, 12, 1933–1940 | 1939