Page 5 of 6
Journal of the American Chemical Society
1
2
3
4
5
6
7
8
9
in Efficient Synthesis of Porphyrin-Based Aryleneethynylene Polymers. Adv.
Synth. Catal. 2012, 354, 2073-2078.
13 ) Jyothish, K.; Zhang, W., Introducing a podand motif to alkyne
metathesis catalyst design: a highly active multidentate molybdenum(VI)
catalyst that resists alkyne polymerization. Angew. Chem., Int. Ed. 2011, 50,
13019-13022. (b) Lhermet, R.; Fürstner, A., Cross-metathesis of terminal
alkynes. Chem. Eur. J. 2014, 20, 13188-13193. (c) Bittner, C.; Ehrhorn, H.;
Bockfeld, D.; Brandhorst, K.; Tamm, M., Tuning the Catalytic Alkyne
(
Metathesis
Trimethylbenzylidyne
3 n
OC(CF ) Me3–n (n = 0–3). Organometallics 2017, 36, 3398-3406. (d)
Activity
of
Molybdenum
and
Tungsten
2,4,6-
Complexes
with
Fluoroalkoxide
Ligands
3
435-3438.
(14) Paley, D. W.; Sedbrook, D. F.; Decatur, J.; Fischer, F. R.; Steigerwald,
M. L.; Nuckolls, C., Alcohol-promoted ring-opening alkyne metathesis
polymerization. Angew. Chem., Int. Ed. 2013, 52, 4591-4594.
Ehrhorn, H.; Schlosser, J.; Bockfeld, D.; Tamm, M., Efficient catalytic
alkyne metathesis with a fluoroalkoxy-supported ditungsten(III) complex.
Beilstein J. Org. Chem. 2018, 14, 2425-2434.
(
15) (a) Hillenbrand, J.; Leutzsch, M.; Fürstner, A., Molybdenum Alkylidyne
(25) Shi, C.; Jia, G., Chemistry of rhenium carbyne complexes. Coord. Chem.
Rev. 2013, 257, 666-701.
1
1
1
1
1
1
1
1
1
1
2
2
2
2
2
2
2
2
2
2
3
3
3
3
3
3
3
3
3
3
4
4
4
4
4
4
4
4
4
4
5
5
5
5
5
5
5
5
5
5
6
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
Complexes with Tripodal Silanolate Ligands: The Next Generation of
Alkyne Metathesis Catalysts. Angew. Chem., Int. Ed. 2019, 58, 1-8. (b)
Hillenbrand, J.; Leutzsch, M.; Yiannakas, E.; Gordon, C. P.; Wille, C.;
Nöthling, N.; Copéret, C.; Fürstner, A., "Canopy Catalysts" for Alkyne
Metathesis: Molybdenum Alkylidyne Complexes with a Tripodal Ligand
Framework. J. Am. Chem. Soc. 2020, 142, 11279-11294.
(16) Bindl, M.; Stade, R.; Heilmann, E. K.; Picot, A.; Goddard, R.; Fürstner,
A., Molybdenum nitride complexes with Ph3SiO ligands are exceedingly
practical and tolerant precatalysts for alkyne metathesis and efficient nitro-
gen transfer agents. J. Am. Chem. Soc. 2009, 131, 9468-9470.
0
(26) Selected recent works on non-d metal alkylidyne complexes: (a) Hill, A.
F.; Manzano, R. A., Dimetallapoly-yn-diylidynes: Ln M≡C-(C≡C)x -
C≡MLn (x=0-4). Angew. Chem., Int. Ed. 2019, 58, 15354-15357. (b) Frogley,
B. J.; Hill, A. F., Flexible Platinum(0) Coordination to a Ditungsten
Ethanediylidyne. Angew. Chem., Int. Ed. 2019, 58, 8044-8048. (c) Luo, M.;
Long, L.; Zhang, H.; Yang, Y.; Hua, Y.; Liu, G.; Lin, Z.; Xia, H., Reactions
of Isocyanides with Metal Carbyne Complexes: Isolation and
Characterization of Metallacyclopropenimine Intermediates. J. Am. Chem.
Soc. 2017, 139, 1822-1825. (d) Buil, M. L.; Cardo, J. J.; Esteruelas, M. A.;
Oñate, E., Square-Planar Alkylidyne-Osmium and Five-Coordinate
Alkylidene-Osmium Complexes: Controlling the Transformation from
Hydride-Alkylidyne to Alkylidene. J. Am. Chem. Soc. 2016, 138, 9720-8728.
(27) (a) Chauvin, Y., Olefin metathesis: the early days (Nobel Lecture).
Angew. Chem., Int. Ed. 2006, 45, 3740-3747. (b) Schrock, R. R., Multiple
metal-carbon bonds for catalytic metathesis reactions (Nobel Lecture).
Angew. Chem., Int. Ed. 2006, 45, 3748-3759. (c) Grubbs, R. H., Olefin-
metathesis catalysts for the preparation of molecules and materials (Nobel
Lecture). Angew. Chem., Int. Ed. 2006, 45, 3760-3765.
(
17) Heppekausen, J.; Stade, R.; Goddard, R.; Fürstner, A., Practical new
silyloxy-based alkyne metathesis catalysts with optimized activity and
selectivity profiles. J. Am. Chem. Soc. 2010, 132, 11045-11057.
(
18) Heppekausen, J.; Stade, R.; Kondoh, A.; Seidel, G.; Goddard, R.;
Fürstner, A., Optimized synthesis, structural investigations, ligand tuning
and synthetic evaluation of silyloxy-based alkyne metathesis catalysts. Chem.
Eur. J. 2012, 18, 10281-10299.
(19) (a) Estes, D. P.; Gordon, C. P.; Fedorov, A.; Liao, W. C.; Ehrhorn, H.;
Bittner, C.; Zier, M. L.; Bockfeld, D.; Chan, K. W.; Eisenstein, O.; Raynaud,
C.; Tamm, M.; Copéret, C., Molecular and Silica-Supported Molybdenum
Alkyne Metathesis Catalysts: Influence of Electronics and Dynamics on
Activity Revealed by Kinetics, Solid-State NMR, and Chemical Shift Analy-
sis. J. Am. Chem. Soc. 2017, 139, 17597-17607. (b) Estes, D. P.; Bittner, C.;
Àrias, Ò .; Casey, M.; Fedorov, A.; Tamm, M.; Copéret, C., Alkyne Metathe-
sis with Silica-Supported and Molecular Catalysts at Parts-per-Million Load-
ings. Angew. Chem., Int. Ed. 2016, 55, 13960-13964.
(28) Bai, W.; Lee, K.-H.; Sung, H. H. Y.; Williams, I. D.; Lin, Z.; Jia, G.,
Alkyne Metathesis Reactions of Rhenium(V) Carbyne Complexes.
Organometallics 2016, 35, 3808-3815.
(29) Bai, W.; Wei, W.; Sung, H. H. Y.; Williams, I. D.; Lin, Z.; Jia, G.,
Syntheses of Re(V) Alkylidyne Complexes and Ligand Effect on the
Reactivity of Re(V) Alkylidyne Complexes toward Alkynes. Organometallics
2018, 37, 559-569.
31
1
(
20) Weissman, H.; Plunkett, K. N.; Moore, J. S., A highly active, heteroge-
neous catalyst for alkyne metathesis. Angew. Chem., Int. Ed. 2006, 45, 585-
88.
21) (a) Haberlag, B.; Wu, X.; Brandhorst, K.; Grunenberg, J.; Daniliuc, C.
(30) The P{ H} NMR spectrum of the crude product displays two signals at
46.3 and 30.9 ppm, in addition to a broad peak at -32.3 ppm assignable to
1
5
(
CuI(PMePh ). The H NMR spectrum shows characteristic peaks of Re≡
2
2
CCH Ph at 2.88 (dt, J = 18.9, 3.2 Hz) and 2.58 (dt, J = 18.9, 3.6 Hz) ppm
G.; Jones, P. G.; Tamm, M., Preparation of imidazolin-2-iminato
molybdenum and tungsten benzylidyne complexes: a new pathway to highly
active alkyne metathesis catalysts. Chem. Eur. J. 2010, 16, 8868-8877. (b)
Beer, S.; Brandhorst, K.; Hrib, C. G.; Wu, X.; Haberlag, B.; Grunenberg, J.;
Jones, P. G.; Tamm, M., Experimental and Theoretical Investigations of
Catalytic Alkyne Cross-Metathesis with Imidazolin-2-iminato Tungsten
Alkylidyne Complexes. Organometallics 2009, 28, 1534-1545. (c) Beer, S.;
Hrib, C. G.; Jones, P. G.; Brandhorst, K.; Grunenberg, J.; Tamm, M.,
Efficient room-temperature alkyne metathesis with well-defined imidazolin-
and a doublet at 8.31 (J = 5.7 Hz) ppm which is assignable to a pyridine
ligand. The NMR data are similar to those of the isolated pyridine-
coordinated complex Re4.
(
31) Commercial A.R. grade toluene or isobutanol stored in air without any
drying process was bubbled with N for 10 minutes before use. Because 5Å
2
MS cannot be employed to absorb 2-butyne in wet solvents, refluxing condi-
tion was utilized to remove the byproduct 2-butyne which will cause pro-
longed reaction times. See: reference 17.
(32) There’s one example of moisture stable alkylidyne catalyst for ring
opening alkyne metathesis polymerization. See: reference 14. Besides, it
2
8
-iminato tungsten alkylidyne complexes. Angew. Chem., Int. Ed. 2007, 46,
890-8894.
should also be mentioned that some Mo(CO) /phenol-based systems have
6
(
22) (1) Elser, I.; Groos, J.; Hauser, P. M.; Koy, M.; van der Ende, M.; Wang,
been reported to operate without exclusion of air or moisture. See: refer-
ences 6a, 6b and 6d).
(33) Schaubach, S.; Gebauer, K.; Ungeheuer, F.; Hoffmeister, L.; Ilg, M. K.;
Wirtz, C.; Fürstner, A., A Two-Component Alkyne Metathesis Catalyst
System with an Improved Substrate Scope and Functional Group Tolerance:
Development and Applications to Natural Product Synthesis. Chem. Eur. J.
2016, 22, 8494-507.
(34) Zhu, J.; Jia, G.; Lin, Z., Theoretical Investigation of Alkyne Metathesis
Catalyzed by W/Mo Alkylidyne Complexes. Organometallics 2006, 25, 1812-
1819.
D.; Frey, W.; Wurst, K.; Meisner, J.; Ziegler, F.; Kästner, J.; Buchmeiser, M.
R., Molybdenum and Tungsten Alkylidyne Complexes Containing Mono-,
Bi-, and Tridentate N-Heterocyclic Carbenes. Organometallics 2019, 38,
4
133-4146. (2) Koy, M.; Elser, I.; Meisner, J.; Frey, W.; Wurst, K.; Kastner,
J.; Buchmeiser, M. R., High Oxidation State Molybdenum N-Heterocyclic
Carbene Alkylidyne Complexes: Synthesis, Mechanistic Studies, and
Reactivity. Chem. Eur. J. 2017, 23, 15484-15490.
(
23) (a) Lysenko, S.; Haberlag, B.; Daniliuc, C. G.; Jones, P. G.; Tamm, M.,
Efficient Catalytic Alkyne Metathesis with a Tri(tert-butoxy)silanolate-
Supported Tungsten Benzylidyne Complex. ChemCatChem 2011, 3 , 115-
1
18. (b) Li, S. T.; Schnabel, T.; Lysenko, S.; Brandhorst, K.; Tamm, M.,
Synthesis of unsymmetrical 1,3-diynes via alkyne cross-metathesis. Chem.
Commun. 2013, 49, 7189-7191.
(
24) (a) Haberlag, B.; Freytag, M.; Daniliuc, C. G.; Jones, P. G.; Tamm, M.,
Efficient metathesis of terminal alkynes. Angew. Chem., Int. Ed. 2012, 51,
ACS Paragon Plus Environment