A. Siva Prasad, B. Satyanarayana / Journal of Molecular Catalysis A: Chemical 370 (2013) 205–209
209
Table 3
and reused for five times without significant loss of catalytic activ-
ity. Inductively coupled plasma (ICP) mass-spectrometric analysis
of the filtrate from the reaction mixture demonstrated that the pal-
ladium metal hardly leached into the solution within the limits of
the detector (1 ppm), thus suggesting that the present alkoxycar-
bonylation reaction proceeded by heterogeneous catalysis.
Pd/Fe3O4-catalyzed alkoxycarbonylation of different aryl iodides with n-butanol as
nucleophile under ambient pressure of CO.a
Entry
Aryl halide
Product
Yield (%)b
90
O
O
I
nBu
1
O
O
4. Conclusion
I
In conclusion, we have developed a simple and efficient method
for the alkoxycarbonylation of aryl iodides with different alco-
hols using magnetically recoverable Pd/Fe3O4 at atmospheric CO
pressure under ligand free conditions. The catalyst is completely
magnetically recoverable because of the superparamagnetic behav-
ior of Fe3O4 and the efficiency of the catalyst remains unaltered
even after 5 cycles. The operational simplicity and the mild reaction
conditions add to the value of this method as a practical alternative
to the alkoxycarbonylation.
nBu
2
3
82
66
O
I
nBu
O
O
I
nBu
O
4
85
Acknowledgment
H3CO
H3CO
ASP and BS thank the Dr. Reddy’s Laboratories Ltd., for the finan-
cial assistance.
O
I
nBu
O
5
6
7
8
85
92
78
90
References
F
F
[1] J. Tsuji, Palladium Reagents and Catalysts, Wiley, Chichester, UK, 2004, p. 265.
[2] R. Skoda-Foldes, L. Kollar, Curr. Org. Chem. 6 (2002) 1097.
[3] M. Mori, in: E. Negishi (Ed.), Handbook of Organopalladium Chemistry for
Organic Synthesis, vol. 2, Wiley-Interscience, New York, 2002, p. 2663.
[4] T.Y. Luh, M. Leung, K.T. Wong, Chem. Rev. 100 (2000) 3187.
[5] H.M. Colquhoun, D.J. Thompson, M.V. Twigg, Carbonylation. Direct Synthesis
of Carbonyl Compounds, Plenum Press, New York, 1991.
[6] Y.V. Gulevich, N.A. Bumagin, I.P. Beletskaya, Russ. Chem. Rev. 37 (1988) 299.
[7] M. Beller, B. Cornils, C.D. Frohning, C.W. Kohlpaintner, J. Mol. Catal. 104 (1995)
17.
[8] T.A. Stromnova, I.I. Moiseev, Russ. Chem. Rev. 67 (1998) 485.
[9] A. Brennfuhrer, H. Neumann, M. Beller, Angew. Chem. Int. Ed. 48 (2009) 4114.
[10] J.R. Martinelli, D.A. Watson, D.M.M. Freckmann, T.E. Barder, S.L. Buchwald, J.
Org. Chem. 73 (2008) 7102.
[11] D.A. Watson, X. Fan, S.L. Buchwald, J. Org. Chem. 73 (2008) 7096.
[12] J. McNulty, J.J. Nair, A. Robertson, Org. Lett. 9 (2007) 4575.
[13] R.H. Munday, J.R. Martinelli, S.L. Buchwald, J. Am. Chem. Soc. 130 (2008) 2754.
[14] Y. Hu, J. Liu, Z. Lu, X. Luo, H. Zhang, Yu. Lan, A. Lei, J. Am. Chem. Soc. 132 (2010)
3153.
O
I
nBu
O
Cl
Cl
O
I
Cl
nBu
O
O
Cl
I
I
nBu
O
F3C
F3C
O
[15] J. Salvadori, E. Balducci, S. Zaza, E. Petricci, M. Taddei, J. Org. Chem. 75 (2010)
1841.
[16] V. Calo, P. Giannoccaro, A. Nacci, A. Monopoli, J. Organomet. Chem. 645 (2002)
152.
O
nBu
O
[17] G.G. Wu, Y. Wong, M. Poirie, Org. Lett. 1 (1999) 745.
9
91
[18] C.T. Yavuz, J.T. Mayo, W.W. Yu, A. Prakash, J.C. Falkner, S. Yean, L.L. Cong, H.J.
Shipley, A. Kan, M. Tomson, D. Natelson, V.L. Colvin, Science 314 (2006) 964.
[19] S.H. Sun, C.B. Murray, D. Weller, L. Folks, A. Moser, Science 287 (2000) 1989.
[20] J. Gao, W. Zhang, P. Huang, B. Zhang, X. Zhang, B. Xu, J. Am. Chem. Soc. 130
(2008) 3710.
O
a
Reaction conditions: aryliodide (1 mmol), n-butanol (2 equiv.), Pd/Fe3O4
(1.5 mol% of Pd), base (1.5 equiv.), DMF (3 mL) and reaction stirred at 80 ◦C, under
CO atmosphere for 10 h.
[21] M.K. Yu, Y.Y. Jeong, J. Park, S. Park, J.W. Kim, J.J. Min, K. Kim, S. Jon, Angew.
Chem. Int. Ed. 47 (2008) 5362.
b
Isolated yield.
[22] A.G. Roca, M.P. Morales, K. O’Grady, C.J. Serna, Nanotechnology 17 (2006) 783.
[23] Y.H. Zheng, Y. Cheng, F. Bao, Y.S. Wang, Mater. Res. Bull. 41 (2006) 525.
[24] P. Majewski, B. Thierry, Crit. Rev. Solid State Mater. Sci. 32 (2007) 203.
[25] T.J. Yoon, W. Lee, Y.S. Oh, J.K. Lee, New J. Chem. 27 (2003) 227.
[26] P.D. Stevens, J. Fan, H.M.R. Gardimalla, M. Yen, Y. Gao, Org. Lett. 7 (2005) 2085.
[27] P.D. Stevens, G. Li, J. Fan, M. Yen, Y. Gao, Chem. Commun. (2005) 4435.
[28] A. Hu, G.T. Yee, W. Lin, J. Am. Chem. Soc. 127 (2005) 12486.
[29] V. Polshettiwar, R. Luque, A. Fihri, H. Zhu, M. Bouhrara, J.M. Basset, Chem. Rev.
11 (2011) 3036.
[30] K.D. Yi, S.S. Lee, Y.J. Ying, Chem. Mater. 18 (2006) 2459.
[31] D. Guin, B. Baruwati, S.V. Manorama, Org. Lett. 9 (2007) 1419.
[32] R. Cano, D.J. Ramon, M. Yus, Tetrahedron 67 (2011) 5432.
[33] J. Liu, X. Peng, W. Sun, Y. Zhao, C. Xia, Org. Lett. 10 (2008) 3933.
[34] R. Abu-Reziq, D. Wang, M. Post, H. Alper, Chem. Mater. 20 (2008) 2544.
[35] W. Hao, J. Sha, S. Sheng, M. Cai, Catal. Commun. 10 (2008) 257–260.
[36] P. Giannoccaro, D. Cornacchia, S. Doronzo, E. Mesto, E. Quaranta, M. Aresta,
Organometallics 26 (2007) 2872.
1–4). Among the different halogen substituted aryl iodides 4-
5–7). Furthermore, the reaction was extended to other aryl iodides
acetyl groups at para position to generate esters in good to excellent
yields (Table 3, entries 8 and 9).
To check the reusability of the catalyst, as can be seen from
Fig. 3, the reaction was performed with iodobenzene and n-butanol
under the optimized reaction conditions. The catalyst was sepa-
rated from the reaction mixture by applying external magnetic field