Paper
RSC Advances
9 H. Li, C. Xie, R. Lan, S. Zha, C.-F. Chan, W.-Y. Wong, K.-L. Ho,
B. D. Chan, Y. Luo, J.-X. Zhang, G.-L. Law, W. C. S. Tai, J.-C.
Conclusions
¨
G. Bunzli and K.-L. Wong, J. Med. Chem., 2017, 60, 8923.
In summary, we have synthesized a set of novel Ce(III) complexes
with azolyl-substituted thiophenolate ligands – 2-(20-mercapto-
phenyl)benzimidazole (NSN(H)), 2-(20-mercaptophenyl)benzox-
azole (OSN(H)) and 2-(20-mercaptophenyl)benzothiazole
(SSN(H)). The lanthanum complex with OSN ligand has been
also synthesized to be used as a reference compound. The data
of X-ray and MALDI-TOF revealed that all the synthesized
complexes are monomeric species which contain three anionic
thiophenolate ligands and one coordinated neutral DME
molecule. It was found that Ce(OSN)3(DME) and Ce(SSN)3(-
DME) in the solid state exhibit the PL peaked at 620 nm. This is
the maximal wavelength ever observed for f–d luminescent
Ce(III) molecular complexes. But no red PL is observed in the
solutions of these complexes that is caused, apparently, by the
blue shi of the f–d transitions. We believe that synthesis of
novel molecular Ce(III) f–d luminophores with long-lived and
low-energy 5d states would become a modern challenge in
coordination chemistry because these compounds will be
useful as red or infrared emitters and can replace noble metal
derivatives in photoredox catalyzed processes.
¨
10 J.-C. G. Bunzli, J. Lumin., 2016, 170, 866.
11 J.-C. G. Bunzli, Luminescence Bioimaging with Lanthanide
Complexes, Luminescence of Lanthanide Ions in Coordination
Compounds and Nanomaterials, Wiley, 1st edn, 2014, vol. 4,
p. 125.
12 X. Qin, X. Liu, W. Huang, M. Bettinelli and X. Liu, Chem.
Rev., 2017, 117, 4488.
13 G. Li, Y. Tian, Y. Zhaoa and J. Lin, Chem. Soc. Rev., 2015, 44,
8688.
14 Y. Qiao and E. J. Schelter, Acc. Chem. Res., 2018, 51, 2926.
15 H. Yin, P. J. Carroll, B. C. Manor, J. M. Anna and
E. J. Schelter, J. Am. Chem. Soc., 2016, 138, 5984.
16 J.-J. Guo, A. Hu, Y. Chen, J. Sun, H. Tang and Z. Zuo, Angew.
Chem., Int. Ed., 2016, 55, 15319.
17 R. Konduri, H. Ye, F. M. MacDonnell, S. Serroni,
S. Campagna and K. Rajeshwar, Angew. Chem., 2002, 114,
3317.
18 S. H. Lee, J. H. Kim and C. B. Park, Chem.–Eur. J., 2013, 19,
4392.
19 N. A. Till, R. T. Smith and D. W. C. MacMillan, J. Am. Chem.
Soc., 2018, 140, 5701.
20 H. Xiang, J. Cheng, X. Ma, X. Zhou and J. Chruma, Chem. Soc.
Rev., 2013, 42, 6128.
21 H. Yin, P. J. Carroll and E. J. Schelter, J. Am. Chem. Soc., 2015,
137, 9234.
Conflicts of interest
There are no conicts to declare.
22 D. M. Kuzyaev, T. V. Balashova, M. E. Burin, G. K. Fukin,
R. V. Rumyantcev, A. P. Pushkarev, V. A. Ilichev,
I. D. Grishin, D. L. Vorozhtsov and M. N. Bochkarev,
Dalton Trans., 2016, 45, 3464.
23 P. N. Hazin, C. Lakshminarayan, L. S. Brinen, J. L. Knee,
J. W. Bruno, W. E. Streib and K. Folting, Inorg. Chem.,
1988, 27, 1393.
24 P. N. Hazin, J. W. Bruno and H. G. Brittain, Organometallics,
1987, 6, 913.
25 M. D. Rausch, K. J. Moriarty, J. L. Atwood, J. A. Weeks,
W. E. Hunter and H. G. Brittain, Organometallics, 1986, 5,
1281.
Acknowledgements
This work was supported by the Russian Foundation for Basic
Research (project no. 18-33-20103). The structure of the
complexes was dened in the Framework of the Russian State
Assignment (Theme 45.6, Reg. N AAAA-A19-119011690055-0).
The work was performed using the instrumental base of the
Analytical Center of the G. A. Razuvaev Institute of Organome-
tallic Chemistry, Russian Academy of Sciences. The analysis of
complexes using MALDI mass spectrometry was done in
accordance with the task of Ministry of Science and Higher
Education of Russia (task 4.5706.2017/B).
26 X.-L. Zheng, Y. Liu, M. Pan, X.-Q. Lu, J.-Y. Zhang, C.-Y. Zhao,
Y.-X. Tong and C.-Y. Su, Angew. Chem., Int. Ed., 2007, 46,
7399.
References
1 I. Hernandez and W. P. Gillin, Handbook on the Physics and 27 A. Baschieri, A. Mazzanti, S. Stagni and L. Sambri, Eur. J.
Chemistry of Rare Earths, 2015, vol. 47, p. 1. Inorg. Chem., 2013, 2432.
2 J.-C. Bunzli, Handbook on the Physics and Chemistry of Rare 28 M. E. Azenha, H. D. Burrows, S. M. Fonseca, M. L. Ramos,
¨
Earths, 2016, vol. 50, p. 141.
J. Rovisco, J. S. de Melo, A. J. F. N. Sobrala and K. Kogejb,
3 E. M. Chan, Chem. Soc. Rev., 2015, 44, 1653.
New J. Chem., 2008, 32, 1531.
4 L. Wang, Z. Zhao, C. Wei, H. Wei, Z. Liu, Z. Bian and 29 H. Kunkely and A. Vogler, J. Photochem. Photobiol., A, 2002,
C. Huang, Adv. Opt. Mater., 2019, 7, 1801256.
151, 45.
5 A. P. Pushkarev and M. N. Bochkarev, Russ. Chem. Rev., 2016, 30 P. R. Matthes and K. Muller-Buschbaum, Z. Anorg. Allg.
85, 1338.
Chem., 2014, 640, 2847.
6 M. A. Katkova and M. N. Bochkarev, Dalton Trans., 2010, 39, 31 Y. Jiao, J. Wang, P. Wu, L. Zhao, C. He, J. Zhang and C. Duan,
6599. Chem.–Eur. J., 2014, 20, 2224.
7 J.-C. Bunzli and A.-S. Chauvin, Handbook on the Physics and 32 T. Yu, W. Su, W. Li, R. Hua, B. Chu and B. Li, Solid-State
¨
¨
Chemistry of Rare Earths, 2014, vol. 44, p. 169.
8 J.-C. G. Bunzli, Eur. J. Inorg. Chem., 2017, 5058.
Electron., 2007, 51, 894.
This journal is © The Royal Society of Chemistry 2019
RSC Adv., 2019, 9, 24110–24116 | 24115