G. QUARTARONE ET AL.
[9] A. Popova, M. Christov, A. Zwetanova, Corros. Sci. 2007, 49,
2131–2143.
[10] G. Quartarone, L. Ronchin, C. Tortato, A. Vavasori, Int. J. Chem. Kin.
2009, 41, 108–112.
[11] R. L. Hinman, J. Lang, J. Am. Chem. Soc. 1964, 86, 3796–3806.
[12] N. C. Marziano, G. Cimino, R. Passerini, J. Chem. Soc, Perkin Trans. II
1973, 1915–1921.
[13] H. Ishii, K. Murakami, E. Sakurada, K. Hosoya, Y. Murakami, J. Chem.
Soc. Perkin Trans. I 1988, 2377–2385.
water necessary for stabilizing the activated state by solvation.
Then, the entropy of the activated complex is lower than that
of both reagent and products because of the much ordered
structured of the highly solvated transition state. This is con-
firmed by the constancy of ΔS‡kDR and ΔSk‡TR relative to the re-
verse reactions of dimerization and trimerization, respectively
(Fig. 8). In fact, it is to be emphasized that both products ((3)
and (4)) and transition states should have similar molecular
structure, but they should differ for the respective solvation
environment.
[14] Y. Wu, W. G. Lobeck, Jr., R. P. Ryan, J. Med. Chem. 1972, 15, 529–534.
[15] B. Oddo, Gazz. Chim. Ital. 1913, 43, 385–391.
[16] O. Schmitz-Dumont, Ber. Deut. Chem. Ges. 1930, 63, 323–329.
[17] W. E. Noland, C. F. Hammer, J. Org. Chem. 1960, 25, 1525–1535.
[18] B. Pal, V. S. Giri, P. Jaisankar, Catal. Commun. 2005, 6, 711–715.
[19] F. Terrier, M. J. Pouet, J. C. Halle, S. Hunt, J. R. Jones, J. Chem. Soc,
Perkin Trans. II 1993, 1665–1672.
CONCLUSIONS
[20] H. A. Albar, A. S. Shavali, M. A. Abdaliah, Can. J. Chem. 1993, 71,
2144–2149.
The main thermodynamic and kinetic parameters of indole
oligomerization in 0.5 mol Lꢀ1 H2SO4 have been measured here.
Calculation of both equilibria and kinetics of oligomerization are
based on the values of the protonation equilibria of indole
evaluated at different temperatures by using a computational
approach, by which a reliable value of pKIH has been calculated
taking into account the experimental one at 298 K. In this way,
activation parameters relative to the Eyring–Evans–Polanyi
equation of indole protonation have been calculated. Besides,
it appears that solvation of reagent, products, intermediates
and transition plays a role of paramount importance in the over-
all behaviours of the system. It is noteworthy that the entropy of
formation of (3) is positive despite of the reaction formerly pro-
ceeds with reduction of mole number, thus suggesting a strong
influence of solvation between reagent and product. On the con-
trary, from (3) to (4), entropy variation is negative following the
expected behaviour. Furthermore, the important role of solva-
tion is clear also from the kinetics point of view. As a matter of
fact, the negative entropy variations of the transition states
evidenced by the Eyring–Polanyi equation relative to the kinetic
constant of dimerization and trimerization (kD and kT, direct
kinetic constant and kDR and kTR, the reverse ones), suggest
the formation of a highly solvated activated complexes whose
complex solvation environment in a highly ordered state,
explain this behaviour. Indole backbone is present in a large
variety of biologically active molecules; for this reason, a
detailed study of the thermodynamic and kinetic properties
of their reactions may be of aid for the comprehension of
several complex biological path.
[21] S. Lakhdar, M. Westermayer, F. Terrier, R. Goumont, T. Boubaker,
A. R. Ofial, H. Mayr, J. Org. Chem. 2006, 71, 9088–9095.
[22] V. Bocchi, G. Palla, Tetrahedron 1986, 42, 5019–5024.
[23] A. Pietropolli Charmet, G. Quartarone, L. Ronchin, C. Tortato,
A. Vavasori, J. Phys. Chem. A 2013, 117, 6846–6858.
[24] M. A. V. Ribeiro da Silva, J. I. T. A. Cabral, J. R. B. Gomes, J. Phys. Chem.
A 2008, 112, 12263–12269.
[25] D. M. Bates, D. G. Watts, Non linear regression analysis & its applica-
tions, John Wiley & Sons, Hoboken, NJ, USA, 1988.
[26] B. C. Garrett, M. J. Redmon, R. Steckler, D. G. Truhlar, K. K. Baldridge,
D. Bartol, M. W. Schmidt, M. S. Gordon, J. Phys. Chem. 1988, 92,
1476–1488.
[27] J. H. Mathews, Numerical methods for computer science, engineering
and mathematics, Prentice-Hall international, London, 1987.
[28] a) J. M. Martin, T. L. Lee, P. R. Taylor, J.-P. François, J. Chem. Phys.
1995, 103, 2589–2602; b) A. Pietropolli Charmet, N. Tasinato,
P. Stoppa, S. Giorgianni, A. Gambi, Mol. Phys. 2011, 109, 2163–2172;
c) V. Barone, J. Chem. Phys. 2005, 122, 014108; d)A. Pietropolli
Charmet, P. Stoppa, N. Tasinato, S. Giorgianni, V. Barone, M. Biczysko,
J. Bloino, C. Cappelli, I. Carnimeo, C. Puzzarini, J. Chem. Phys. 2013,
139, 164302.
[29] K. Raghavachari, G. W. Trucks, J. A. Pople, M. Head-Gordon, Chem.
Phys. Lett. 1989, 157, 479–483.
[30] A. V. Marenich, R. M. Olson, C. P. Kelly, C. J. Cramer, D. G. Truhlar,
J. Chem. Theory Comput. 2007, 3, 2011–2033.
[31] A. D. Becke, J. Chem. Phys. 1993, 98, 5648–5652.
[32] a) T. H. Dunning, Jr., J. Chem. Phys. 1989, 90, 1007–1023; b) D. E.
Woon, T. H. Dunning, Jr. J. Chem. Phys. 1993, 98, 1358–1371.
[33] A. C. Chamberlin, C. J. Cramer, D. G. Truhlar, J. Phys. Chem. B 2008,
112, 3024–3039.
[34] M. Gupta, E. F. da Silva, H. F. Svendsen, J. Phys. Chem. B 2012, 116,
1865–1875.
[35] M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R.
Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, et al.
Gaussian 09, Revision C.01, D. J. Gaussian, Inc., Wallingford CT, 2009.
[36] M. W. Schmidt, K. K. Baldridge, J. A. Boatz, S. T. Elbert, M. S. Gordon,
J. H. Jensen, S. Koseki, N. Matsunaga, K. A. Nguyen, S. Su, et al.
J. Comput. Chem. 1993, 14, 1347–1363.
Acknowledgement
[37] a) M. S. Gordon, M. W. Schmidt, Advances in electronic structure the-
ory: GAMESS a decade later, in: Theory and Applications of Computa-
tional Chemistry: the first forty years (Eds: C. E. Dykstra, G. Frenking,
K. S. Kim, G. E. Scuseria), Elsevier, Amsterdam, 2005, 1167–1189; b)
M. Higashi, A. V. Marenich, R. M. Olson, A. C. Chamberlin, J. Pu, C. P.
Kelly, J. D. Thompson, J. D. Xidos, J. Li, T. Zhu, et al. G. GAMESSPLUS
– version 2010-2, University of Minnesota, Minneapolis, 2010.
[38] C. A. Ramsden, J. A. Joule, V. V. Zhdankin in: Handbook of Heterocy-
clic Chemistry (Ed: A. R. Katritzky), 3rd edn, Elsevier Science, Oxford,
2010, 394–397.
Financial support by Ca’ Foscari University of Venice is gratefully
acknowledged (ADIR fund 2012).
REFERENCES
[1] G. Penieres-Carrill, J. G. Garcıa-Estrada, J. L. Gutierrez-Ramırez,
C. lvarez-Toledano, Green Chem. 2003, 5, 337.
[2] A. M. Restivo, A. A. Arslan, G. L. Goldberg, Obstet. Gynecol. 2005, 105,
45S–46S.
[3] R. J. Sundberg, Indoles, Academic Press, San Diego CA, 1996.
[4] N. Robertson, S. Parsons, E. J. MacLean, R. A. Coxall, A. R. Mount,
J. Mater. Chem. 2000, 10, 2043–2047.
[39] B. S. Andonowski, G. M. Stojkovich, Acta Chim. Slov. 2000, 47,
349–358.
[40] G. Berti, A. Da Settimo, D. Segnini, Gazz. Chim. Ital 1961, 91, 571–579.
[41] K. M. Ervin, V. F. De Turo, J. Phys. Chem. A 2002, 106, 9947–9956.
[42] F. C. Pickard, D. R. Griffith, S. J. Ferrara, M. D. Liptak, K. N. Kirschner,
G. C. Shields, Int. J. Quantum Chem. 2006, 106, 3122–3128.
[43] D. M. Mc Quarrie, Statistical Mechanics, Harper and Row, New York,
1970, 86.
[5] N. Otero, M. Mandado, R. A. Mosquera, J. Phys. Chem. A 2007, 111,
5557–5562.
[6] G. Quartarone, T. Bellomi, A. Zingales, Corros. Sci. 2003, 45, 715–733.
[7] G. Quartarone, L. Bonaldo, C. Tortato, Appl. Surf. Sci. 2006, 252,
8251–8257.
[44] Y. Zhao, D. G. Truhlar, Theor. Chem. Acc. 2008, 120, 215–241.
[8] M. Düdükcü, F. Koleli, Prog. Org. Coat. 2006, 55, 324–329.
wileyonlinelibrary.com/journal/poc
Copyright © 2014 John Wiley & Sons, Ltd.
J. Phys. Org. Chem. 2014, 27 680–689