Polycationic
â
-Cyclodextrin “Click Clusters”
A R T I C L E S
tionalization sites.12,13 These unique and useful characteristics
provide tailorable scaffolds that have motivated their develop-
ment as nucleic acid carriers. For example, polyamidoamine
(PAMAM),8,14,15 poly-L-lysine dendrimers,16 dendritic-sper-
mines,17 -polyesters,18 and -polypeptides2,19 have been widely
studied for nucleic acid delivery. Higher generations of these
structures yield effective delivery.20 However, chemically func-
tionalizing the large number of peripheral groups on these
macromolecules with ligands such as polyethylene glycol (to
decrease aggregation and nonspecific interactions), and targeting
groups in a well-defined and reproducible manner is complex
and sometimes not possible.15,21 Loss of material definition
increases polydispersity of the final delivery vehicle, generates
difficulties with structural characterization, and can cause
problems in the clinic. Toxicity of these structures has also
become a concern that has further hampered development
efforts.11,14,22
Herein, we describe our approach to achieve a family of
discrete macromolecules with versatile features to serve as drug
and nucleic acid delivery vehicles. We were inspired by the
clinical promise of dendrimers4,10 and the distinctive features
of â-cyclodextrin, which has been shown to serve as a
multivalent core in the design of glyco-clusters,23,24 -con-
jugates,25,26 -dendrimers,27 and star polymers.28 This cyclic
maltooligosaccharide is also endowed with a biocompatible
hydrophobic cup-shaped structure that can form inclusion
complexes with biologically specific guests. For example,
â-cyclodextrin is FDA approved as an adjuvant to aid solubi-
lization of hydrophobic drugs by forming inclusion complexes
with the therapeutic molecule, which increases bioavailability.29
Davis et al. and others have shown that polymers containing
â-cyclodextrin units can complex adamantane moieties func-
tionalized with polyethylene glycol (PEG) chains and cell-type
specific targeting moieties to discourage nanoparticle floccula-
tion and encourage tissue-specific nucleic acid delivery.30,31 The
present target structures were also motivated by previous work
conducted in our group.32 We have shown that polymers created
with alternating saccharide and oligoethyleneamine monomers
can effectively complex, condense, and deliver pDNA with
exceptional biocompatibility and efficacy.33,34 Unfortunately,
those polymers suffer from polydispersity. The work herein
presents the first example of extending this saccharide-oligoam-
ine design motif into a novel family of polycationic â-cyclo-
dextrin click clusters with discrete, monodisperse, and symmetric
geometries that reveal promising DNA delivery efficacy without
cytotoxicity. This design motif also reveals a prototype of readily
tailorable scaffolds with potential to be refined as clinically
viable delivery agents for a variety of applications.
In this report, the synthesis of the core moiety, acetylated-
per-azido-â-cyclodextrin (4), and a novel series of alkyne
dendrons (7a-e) containing between 0 and 4 secondary amines
are presented (Schemes 1 and 2). The target macromolecules
were assembled employing a convergent approach via the click
reaction. This allowed us to avoid subfunctionalized impurities
around the sterically hindered core that could elicit unintended
biological activity (Scheme 3).13,35,26 We discovered through
gel electrophoresis, dynamic light scattering, and transmission
electron microscopy experiments that all the cluster compounds
bind and encapsulate pDNA into nanoparticles. These nano-
particles stabilize nucleic acids and protect them from nuclease
degradation. In addition, most of the vectors promote high
cellular delivery of pDNA (similar to that of Jet-PEI and
Superfect, the positive controls) and encourage effective gene
(12) (a) Mulder, A.; Huskens, J.; Reinhoudt, D. N. Org. Biomol. Chem. 2004,
2, 3409-3424. (b) Smith, D. K. Chem. Commun. 2006, 1, 34-44. (c) Ihre,
H.; Padilla De Jesus, O. L.; Fre´chet, J. M. J. J. Am. Chem. Soc. 2001, 123,
5908-5917.
(13) Hawker, C. J.; Fre´chet, J. M. J. J. Am. Chem. Soc. 1990, 112, 7638-7647.
(14) Braun, C. S.; Vetro, J. A.; Tomalia, D. A.; Koe, G. S.; Koe, J. G.; Middaugh,
C. R. J. Pharm. Sci. 2005, 94, 423-436.
(15) Luo, D.; Haverstick, K.; Belcheva, N.; Han, E.; Saltzman, W. M.
Macromolecules 2002, 35, 3456-3462.
(16) (a) Ohsaki, M.; Okuda, T.; Wada, A.; Hirayama, T.; Niidome, T.; Aoyagi,
H. Bioconjugate Chem. 2002, 13, 510-517. (b) Yamagata, M.; Kawano,
T.; Shiba, K.; Mori, T.; Katayama, Y.; Niidome, T. Bioorg. Med. Chem.
2007, 15, 526-532. (c) Vlasov, G. P.; Korol’kov, V. I.; Pankova, G. A.;
Tarasenko, I. I.; Baranov, A. N.; Glazkov, P. B.; Kiselev, A. V.; Ostapenko,
O. V.; Lesina, E. A.; Baranov, V. S. Russ. J. Bioorg. Chem. 2004, 30,
12-20.
(17) (a) Kostiainen, M. A.; Hardy, J. G.; Smith, D. K. Angew. Chem., Int. Ed.
2005, 44, 2556-2559. (b) Hardy, J. G.; Kostiainen, M. A.; Smith, D. K.;
Gabrielson, N. P.; Pack, D. W. Bioconjugate Chem. 2006, 17, 172-178.
(18) (a) Grinstaff, M. W. Chem. Eur. J. 2002, 8, 2838-2846. (b) Gvili, K.;
Benny, O.; Danino, D.; Machluf, M. Biopolymers 2007, 85, 379-391. (c)
Wu, D.; Liu, Y.; Jiang, X.; He, C.; Goh, S. H.; Leong, K. W. Biomacro-
molecules 2006, 7, 1879-1883.
(27) (a) Ortega-Caballero, F.; Gime´nez-Mart´ınez, J. J.; Garc´ıa-Fuentes, L.; Ortiz-
Salmero´n, E.; Santoyo-Gonza´lez, F.; Vargas-Berenguel, A. J. Org. Chem.
2001, 66, 7786-7795. (b) Jayaraman, N.; Stoddart, J. F. Tetrahedron Lett.
1997, 38, 6767-6770. (c) Turnbull, W. B.; Stoddart, J. F. ReV. Mol.
Biotechnol. 2002, 90, 231-255. (d) Vargas-Berenguel, A.; Ortega-
Caballero, F.; Santoyo-Gonza´lez, F.; Garc´ıa-Lo´pez, J. J.; Gime´nez-Mart´ınez,
J. J.; Garc´ıa-Fuentes, L.; E, Ortiz.-Salmero´n, E. Chem. Eur. J. 2002, 8,
812-827.
(19) Sadler, K.; Tam, J. P. ReV. Mol. Biotechnol. 2002, 90, 195-229.
(20) (a) Gillies, E. R.; Fre´chet, J. M. J. Drug DiscoVery Today 2005, 10, 35-
43. (b) Gillies, E. R.; Fre´chet, J. M. J. J. Am. Chem. Soc. 2002, 124, 14137-
14146.
(28) (a) Hoogenboom, R.; Moore, B. C.; Schubert, U. S. Chem. Comm. 2006,
38, 4010-4012. (b) Yang, C.; Li, H.; Goh, S. H.; Li, J. Biomaterials 2007,
28, 3245-3254.
(21) (a) Petersen, H.; Fechner, P. M.; Martin, A. L.; Kunath, K.; Stolnik, S.;
Roberts, C. J.; Fischer, D.; Davies, M. C.; Kissel, T. Bioconjugate Chem.
2002, 13, 845-854. (b) Lee, J. H.; Lim, Y.-B.; Choi, J. S.; Lee, Y.; Kim,
T.-I.; Kim, H. J.; Yoon, J. K.; Kim, K.; Park, J.-S. Bioconjugate Chem.
2003, 14, 1214-1221.
(22) (a) Jevprasesphant, R.; Penny, J.; Jalal, R.; Attwood, D.; McKeown, N.
B.; D’Emanuele, A. J. Int. J. Pharm. 2003, 252, 263-266. (b) Malik, N.;
Wiwattanapatapee, R.; Klopsch, R.; Lorenz, K.; Frey, H.; Weener, J. W.;
Meijer, E. W.; Paulus, W.; Duncan, R. J. Controlled Release 2000, 65,
133-148.
(29) (a) Mocanu, G.; Vizitiu, D.; Carpov, A. J. Bioact. Compat. Pol. 2001, 16,
315-342. (b) Cryan, S.-A.; Holohan, A.; Sonohue, R.; Darcy, R.;
O’Driscoll, C. M. Eur. J. Pharm. Sci. 2004, 21, 625-633.
(30) (a) Hwang, S. J.; Bellocq, N. C.; Davis, M. E. Bioconjugate Chem. 2001,
12, 280-290. (b) Reineke, T. M.; Davis, M. E. Bioconjugate Chem. 2003,
14, 247-254.
(31) Bellocq, N. C.; Pun, S. H.; Jensen, G. S.; Davis, M. E. Bioconjugate Chem.
2003, 14, 1122-1132.
(32) (a) Liu, Y.; Reineke, T. M. J. Am. Chem. Soc. 2005, 127, 3004-3015. (b)
Liu, Y. W. L.; Lynch, M.; Reineke, T. M. In Polymeric Drug DeliVery
Volume I - Particulate Drug Carriers; Svenson, S., Ed.; American Chemical
Society: Washington, DC, 2005; Vol. 923, pp 217-227. (c) Srinivasachari,
S.; Liu, Y.; Zhang, G.; Prevette, L.; Reineke, T. M. J. Am. Chem. Soc.
2006, 128, 8176-8184. (d) Prevette, L. E.; Kodger, T. E.; Reineke, T. M.;
Lynch, M. E. Langmuir 2007, 23, 9773-9784.
(23) (a) Andre´, S.; Kaltner, H.; Furuike, T.; Nishimura, S.-I.; Gabius, H.-J.
Bioconjugate Chem. 2004, 15, 87-98. (b) Furuike, T.; Sadamoto, R.;
Niikura, K.; Monde, K.; Sakairi, N.; Nishimura, S. -I. Tetrahedron 2005,
61, 1737-1742. (c) Ortiz-Mellet, C.; Benito, J. M.; Garc´ıa Ferna´ndez, J.
M.; Law, H.; Chmurski, K.; Defaye, J.; O’Sullivan, M. L.; Caro, H. N.
Chem. Eur. J. 1998, 4, 2523-2531. (d) Fulton, D. A.; Stoddart, J. F. Org.
Lett. 2000, 2, 1113-1116.
(33) Liu, Y.; Reineke, T. M. Bioconjugate Chem. 2006, 17, 101-108.
(34) Liu, Y.; Reineke, T. M. Bioconjugate Chem. 2007, 18, 19-30.
(35) (a) Calvo-Flores, F. G.; Isac-Garc´ıa, J.; Herna´ndez-Mateo, F.; Pe´rez-
Balderas, F.; Calvo-As´ın, J. A.; Sanche´z-Vaquero, E.; Santoyo-Gonza´lez,
F. Org. Lett. 2000, 2, 2499-2502. (b) Yoon, K.; Goyal, P.; Weck, M.
Org. Lett. 2007, 9, 2051-2054. (c) Lee, J. W.; Kim, J. H.; Kim, H. J.;
Han, S. C.; Kim, J. H.; Shin, W. S.; Jin, S.-H. Bioconjugate Chem. 2007,
18, 579-584. (d) Binder, W. H.; Sachsenhofer, R. Macromol. Rapid
Commun. 2007, 28, 15-54.
(24) Boger, J.; Corcoran, R. J.; Lehn, J.-M. HelV. Chim. Acta 1978, 61, 2190-
2218.
(25) Garc´ıa-Lo´pez, J. J.; Herna´ndez-Mateo, F.; Isac-Garc´ıa, J.; Kim, J. M.; Roy,
R.; Santoyo-Gonza´lez, F.; Vargas-Berenguel, A. J. Org. Chem. 1999, 64,
522-531.
(26) Pe´rez-Balderas, F.; Ortega-Mun˜oz, M.; Morales-Sanfrutos, J.; Herna´ndez-
Mateo, F.; Calvo-Flores, F. G.; Calvo-Asyn, J. A.; Isac-Garc´ıa, J.; Santoyo-
Gonza´lez, F. Org. Lett. 2003, 5, 1951-1954.
9
J. AM. CHEM. SOC. VOL. 130, NO. 14, 2008 4619