Journal of the American Chemical Society
Communication
(6) In the interrupted Fischer azaindolization, rather than rear-
omatization occurring to give an azaindole heterocycle, the transient
iminium species generated is trapped by a pendant nucleophile (see
mechanism for 3 + 4 → 5 in Figure 1). For reviews on the parent
interrupted Fischer indolization reaction (nonaza version), see: (a) Li,
S.; Han, J.; Li, A. Huaxue Xuebao 2013, 71, 295−298. (b) Mo, Y.;
Zhao, J.; Chen, W.; Wang, Q. Res. Chem. Intermed. 2015, 41, 5869−
5877. (c) Susick, R. B.; Morrill, L. A.; Picazo, E.; Garg, N. K. Synlett
2017, 28, 1−11. One example of the Fischer azaindolization has been
reported for the synthesis of a tetracyclic pyrrolidino-4-azaindoline; see
(d) de Graaff, C.; Bensch, L.; Boersma, S. J.; Cioc, R. C.; van Lint, M.
J.; Janssen, E.; Turner, N. J.; Orru, R. V. A.; Ruijter, E. Angew. Chem.,
Int. Ed. 2015, 54, 14133−14136.
(7) Only four azaindoline compounds of the type 5 are known in the
literature. For two furano-4-azaindolines prepared by a Pd-catalyzed
intermolecular carboamination approach, see: (a) Bizet, V.; Borrajo-
Calleja, G. M.; Besnard, C.; Mazet, C. ACS Catal. 2016, 6, 7183−7187.
For a pyrrolidino-7-azaindoline derived from a [3+2] alkene/
isocyanate cycloaddition, see: (b) Huang, L.; Cheng, H.; Zhang, R.;
Wang, M.; Xie, C. Adv. Synth. Catal. 2014, 356, 2477−2484.
(c) Cheng, H.; Zhang, R.; Yang, S.; Wang, M.; Zeng, X.; Xie, L.;
Xie, C.; Wu, J.; Zhong, G. Adv. Synth. Catal. 2016, 358, 970−976. See
also reference 6d.
ASSOCIATED CONTENT
* Supporting Information
The Supporting Information is available free of charge on the
■
S
Experimental details and computations (PDF)
AUTHOR INFORMATION
■
Corresponding Authors
ORCID
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
The authors are grateful to the NSF (CHE-1464898 to N.K.G.,
CHE-1361104 to K.N.H. and DGE-1144087 for B.J.S.), the
Fulbright Research Fellowship (M.H.), the Fonds de recherche
(8) Mer
2014, 19, 19935−19979.
(9) A structural search using Reaxys was used to obtain these
statistics (accessed June, 2017).
́ ́
our, J.-Y.; Buron, F.; Ple, K.; Bonnet, P.; Routier, S. Molecules
́
du Quebec, Nature et Technologies (postdoctoral fellowship
for P A.C.), the NIH-NIGMS (F31-GM117945 to E.P. and
F31-GM121016 to L.A.M), the Foote Family (E.P. and
L.A.M.), and UCLA for financial support. These studies were
supported by shared instrumentation grants from the NSF
(CHE-1048804) and the NIH NCRR (S10RR025631).
Computations were performed on the Hoffman2 cluster at
UCLA.
(10) Bollag, G.; Tsai, J.; Zhang, J.; Zhang, C.; Ibrahim, P.; Nolop, K.;
Hirth, P. Nat. Rev. Drug Discovery 2012, 11, 873−886.
(11) Subramaniam, G.; Hiraku, O.; Hayashi, M.; Koyano, T.;
Komiyama, K.; Kam, T.-S. J. Nat. Prod. 2007, 70, 1783−1789.
(12) See the SI for details.
(13) ΔG‡[3,3] is the difference between the transition state energy of
the sigmatropic rearrangement step and the energy of the
enehydrazine precursor.
(14) [3,3]-Sigmatropic rearrangement in the Fischer indolization is
thought to proceed more favorably via protonation of the β-nitrogen.
For prior computational studies, see: Çelebi-Olcum, N.; Boal, B. W.;
̈
Huters, A. D.; Garg, N. K.; Houk, K. N. J. Am. Chem. Soc. 2011, 133,
5752−5755.
REFERENCES
■
(1) (a) Fischer, E.; Jourdan, F. Ber. Dtsch. Chem. Ges. 1883, 16,
2241−2245. (b) Fischer, E.; Hess, O. Ber. Dtsch. Chem. Ges. 1884, 17,
559−568.
(2) (a) Robinson, B. Chem. Rev. 1963, 63, 373−401. (b) Robinson,
B. Chem. Rev. 1969, 69, 227−250. (c) Humphrey, G. R.; Kuethe, J. T.
Chem. Rev. 2006, 106, 2875−2911. (d) Hughes, D. L. Org. Prep.
Proced. Int. 1993, 25, 607−632.
(15) Considering the higher basicity of 4-methoxypyridine compared
to pyridine itself, this result may seem counterintuitive. However, this
result underscores the need to take into account the relative basicities
of the corresponding enehydrazine intermediates. We estimate that the
enehydrazine derivative of 4-methoxypyridine is roughly 2 orders of
magnitude more basic compared to the enehydrazine derivative of
pyridine itself based on calculations. See the SI for details.
(16) We also predicted that the use of N-methylhydrazine i would
perform more favorably compared to hydrazine 41, largely due to a
more favorable tautomerization equilibrium (ΔG[H+]). Despite the
high estimated overall barrier of 32.4 kcal/mol, we found that Fischer
azaindolization of iv + v gave vi in 44% yield. Under identical
conditions, the corresponding indolization of 41 gave only 12% yield
of product 42.
(3) (a) Kruger, S.; Gaich, T. Angew. Chem., Int. Ed. 2015, 54, 315−
̈
317. (b) Park, J.; Kim, D.-H.; Das, T.; Cho, C.-G. Org. Lett. 2016, 18,
5098−5101. (c) Smith, J. M.; Moreno, J.; Boal, B. W.; Garg, N. K. J.
Am. Chem. Soc. 2014, 136, 4504−4507. (d) Moreno, J.; Picazo, E.;
Morrill, L. A.; Smith, J. M.; Garg, N. K. J. Am. Chem. Soc. 2016, 138,
1162−1165. (e) Ueda, H.; Satoh, H.; Matsumoto, K.; Sugimoto, K.;
Fukuyama, T.; Tokuyama, H. Angew. Chem., Int. Ed. 2009, 48, 7600−
7603. (f) Satoh, H.; Ueda, H.; Tokuyama, H. Tetrahedron 2013, 69,
89−95. (g) Wang, D.; Hou, M.; Ji, Y.; Gao, S. Org. Lett. 2017, 19,
1922−1925. (h) Adams, G. L.; Carroll, P. J.; Smith, A. B., III J. Am.
Chem. Soc. 2012, 134, 4037−4040. (i) Adams, G. L.; Carroll, P. J.;
Smith, A. B., III J. Am. Chem. Soc. 2013, 135, 519−528.
(4) (a) Kelly, A. H.; McLeod, D. H.; Parrick, J. Can. J. Chem. 1965,
43, 296−301. (b) Kelly, A. H.; Parrick, J. Can. J. Chem. 1966, 44,
2455−2459. (c) Crooks, P. A.; Robinson, B. Can. J. Chem. 1969, 47,
2061−2067. (d) Jeanty, M.; Blu, J.; Suzenet, F.; Guillaumet, G. Org.
Lett. 2009, 11, 5142−5145. (e) Pin, F.; Buron, F.; Saab, F.; Colliandre,
L.; Bourg, S.; Schoentgen, F.; Le Guevel, R.; Guillouzo, C.; Routier, S.
MedChemComm 2011, 2, 899−903. (f) Inman, M.; Carbone, A.;
Moody, C. J. J. Org. Chem. 2012, 77, 1217−1232. (g) Thomae, D.;
Jeanty, M.; Coste, J.; Guillaumet, G.; Suzenet, F. Eur. J. Org. Chem.
2013, 3328−3336. (h) Alekseyev, R. S.; Amirova, S. R.; Kabanova, E.
V.; Terenin, V. I. Chem. Heterocycl. Compd. (N. Y., NY, U. S.) 2014, 50,
1305−1315.
(17) Yu, Q.; Liu, C.; Brzostowska, M.; Chrisey, L.; Brossi, A.; Greig,
N. H.; Atack, J. R.; Soncrant, T. T.; Rapoport, S. I.; Radunz, H. E. Helv.
Chim. Acta 1991, 74, 761−766.
(5) Perkin, W. H.; Robinson, R. J. Chem. Soc., Trans. 1913, 103,
1973−1985.
D
J. Am. Chem. Soc. XXXX, XXX, XXX−XXX