C. Liu, J. Li / Physics Letters A 375 (2011) 1152–1155
1155
5. Conclusions
[2] Y. Nanishi, Y. Saito, T. Yamaguchi, Jpn. J. Appl. Phys. 42 (2003) 2549.
[3] C.P. Foley, T.L. Tansley, Phys. Rev. B 33 (1986) 1430.
[4] Motlan, E.M. Goldys, T.L. Tansley, J. Cryst. Growth 241 (2002) 165.
[5] K.L. Westra, M.J. Brett, Thin Solid Films 192 (1990) 227.
[6] J. Wu, W. Walukiewicz, W. Shan, K.M. Yu, J.W. Ager, S.X. Li, E.E. Haller, H. Lu,
W.J. Schaff, J. Appl. Phys. 94 (2003) 4457.
[7] M. Yoshimoto, H. Yamamoto, W. Huang, H. Harima, J. Saraie, Appl. Phys. Lett. 83
(2003) 3480.
[8] S.H. Wei, X.L. Nie, I.G. Batyrev, S.B. Zhang, Phys. Rev. B 67 (2003) 165209.
[9] V.Y. Davydov, et al., Phys. Status Solidi B 229 (2002) R1.
[10] V.Y. Davydov, A.A. Klochikhin, V.V. Emtsev, Phys. Status Solidi B 230 (2002) R4.
[11] T.S. Moss, Proc. Phys. Soc. London, Sect. B 67 (1954) 775;
E. Burstein, Phys. Rev. 93 (1954) 632.
[12] I. Mahboob, T.D. Veal, L.F.J. Piper, C.F. McConville, H. Lu, W.J. Schaff, J. Furth-
muller, F. Bechstedt, Phys. Rev. B 69 (2004) 201307.
[13] X.Q. Wang, S.B. Che, Y. Ishitani, A. Yoshikawa, J. Appl. Phys. 99 (2006) 073512.
[14] P. Schley, R. Goldhahn, G. Gobsch, M. Feneberg, K. Thonke, X. Wang, A.
Yoshikawa, Phys. Status Solidi B 246 (2009) 1177.
In summary, inspired by the concept of Burstein–Moss shift, we
simulate the relation between absorption edge and free electron
concentration based on DFT-LDA methods, which is in good agree-
ment with experimental data. This verifies that the band gap of
InN is around 0.78 eV, not the widely accepted value of 1.9 eV.
High density of free electrons is the cause of blue shift of InN
absorption edge which is usually used to determine band gap ap-
proximately. We also give a schematic in which energetic positions
of the four n-type defects with low formation energies are shown.
We can see that they are all high enough to ionize when Fermi
level is lifted upto 1.9 eV and in turn help to widen absorption
edge. Hence, they are the potential contributors of free electron
density in InN because of their low formation energy and low ion-
ization energy. However, DOS of conduction band starts to increase
sharply from the energy of 2.09 eV above VBM, determining that
absorption edge can rarely reach higher than 2.09 eV.
[15] C. Stampfl, C.G. Van de Walle, D. Vogel, P. Krüger, J. Pollmann, Phys. Rev. B 61
(2000) R7846.
[16] C.G. Van de Walle, Phys. Status Solidi B 235 (2002) 89.
[17] C.G. Van de Walle, J. Neugebauer, J. Appl. Phys. 95 (2004) 3851.
[18] G. Kresse, J. Hafner, Phys. Rev. B 47 (1993) 558;
G. Kresse, J. Hafner, Phys. Rev. B 48 (1993) 13115.
[19] P.E. Blöchl, Phys. Rev. B 50 (1994) 17953;
Acknowledgements
G. Kresse, D. Joubert, Phys. Rev. B 59 (1999) 1758.
J.L. gratefully acknowledges financial support from the “One-
Hundred Talent Plan” of the Chinese Academy of Sciences and
National Science Fund for Distinguished Young Scholar (Grant
No. 60925016). This work is supported by the National High Tech-
nology Research and Development program of China under con-
tract No. 2009AA034101.
[20] I.G. Pichugin, M. Tiachala, Izv. Akad. Nauk SSSR, Neorg. Mater. 14 (1978) 175.
[21] Y.H. Chang, Y.S. Lu, Y.L. Hong, C.T. Kuo, S. Gwo, J.A. Yeh, J. Appl. Phys. 107 (2010)
043710.
[22] F. Bechstedt, J. Furthmüller, J. Cryst. Growth 246 (2002) 315.
[23] Q.X. Guo, M. Nishio, H. Ogawa, A. Wakahara, A. Yoshida, Phys. Rev. B 58 (1998)
15304.
[24] J. Wu, W. Walukiewicz, Appl. Phys. Lett. 84 (2004) 2805.
[25] J. Wu, W. Walukiewicz, W. Shan, K.M. Yu, J.W. Ager III, E.E. Haller, H. Lu, W.J.
Schaff, Phys. Rev. B 66 (2002) 201403.
References
[26] X.M. Duan, C. Stampfl, Phys. Rev. B 77 (2008) 115207.
[27] T. Dietl, H. Ohno, MRS Bulletin 28 (2003) 714.
[1] A.G. Bhuiyan, A. Hashimoto, A. Yamamoto, J. Appl. Phys. 94 (2003) 2779.