122
T.C. Ho et al. / Journal of Catalysis 276 (2010) 114–122
hydrogenation function. As a result, it gives about a 9-fold activity
advantage over a commercial sulfided CoMo/Al2O3–SiO2 catalyst
for desulfurization of 46DEDBT in the absence of 3ECBZ. But it suf-
fers a disproportionately greater loss of HDS activity than CoMo/
Al2O3–SiO2 in the presence of 3ECBZ. In other words, ReS2 is less
resilient to 3ECBZ inhibition than CoMo/Al2O3–SiO2. The latter
Acknowledgment
Q. Shen from the Department of Chemical Engineering at the
University of Texas at Austin acknowledges a summer internship
supported by ExxonMobil Research and Engineering Company.
has a higher selectivity for hydrogenolysis (lower cDEDBT). A recent
References
study has shown that hydrogenolysis sites are more capable of
mitigating the impact of organonitrogen inhibition than hydroge-
nation sites [16].
[1] H. Topsøe, B.S. Clausen, F.E. Massoth, Hydrotreating Catalysis, Springer-Verlag,
1996.
[2] B.C. Gates, H. Topsøe, Polyhedron 16 (1997) 3213.
[3] N. Hermann, M. Brorson, H. Topsøe, Catal. Lett. 65 (2000) 169.
[4] T.C. Ho, Catal. Today 98 (2004) 3.
The unsupported ReS2 catalyst shows about a sevenfold HDN
activity advantage over the sulfided CoMo/Al2O3–SiO2 catalyst. It
is also much more selective for HDN in simultaneous HDS and
HDN experiments. This can be attributed to a high adsorption
affinity for organonitrogen species coupled with a fast C–N bond
cleavage rate. The high HDN activity results from a greater intrinsic
activity per active site, rather than a higher site density. The nature
of the active sites on ReS2 and on CoMo/Al2O3–SiO2 should be very
different, even though ReS2 and MoS2 are structurally similar in
certain respects. It is of great interest to know whether metallic
brim sites exist on ReS2.
A highly hydrogenative ReS2 should be regarded as a catalyst
primarily for deep HDN. It is relevant to point out that the nitrogen
content of refinery hydroprocessing feedstocks has been increasing
over the years. The objectives of two key refinery conversion pro-
cesses, fluid catalytic cracking and hydrocracking, cannot be
achieved unless the feed nitrogen level is reduced to a sufficiently
low level. Developments of new or improved HDN catalysts and
processes have been and will continue to be important in the years
ahead [31].
As for ultra-deep HDS applications, ReS2 should be used with a
hydrogenolysis-selective catalyst in a properly configured stacked
bed to give an activity synergism. This catalyst-stacking strategy
has been demonstrated with a highly hydrogenative Ni0.5Mn0.5Mo
sulfide catalyst [4]. Also, the low nitrogen tolerance of the ReS2 cat-
alyst may be improved through incorporation of promoter metals
such as cobalt and/or nickel. Co- or Ni-promoted Re sulfide cata-
lysts, in unsupported or supported form, are more HDS-selective
than their unpromoted counterparts, suggesting that they may
be more hydrogenolysis selective [32,33].
[5] T.C. Ho, Catal. Today 130 (2008) 206.
[6] T.C. Ho, Catal. Lett. 89 (2003) 21.
[7] S. Eijsbouts, S.W. Mayo, K. Fujita, Appl. Catal. A: Gen. 322 (2007) 58.
[8] J.V. Lauritsen, M. Nyberg, J.K. Nørskov, B.S. Clausen, H. Topsøe, E. Lægsgaard, F.
Besenbacher, J. Catal. 224 (2004) 94.
[9] V. Petkov, J.L. Billinge, P. Larson, S.D. Mahanti, T. Vogt, K.K. Rangan, M.G.
Kanatzidis, Phys. Rev. B 65 (2002) 092105.
[10] H.H. Murray, S.P. Kelty, R.R. Chianelli, C.S. Day, Inorg. Chem. 33 (1994) 4418.
[11] H.J. Lamfers, A. Meetsma, G.A. Wiegers, J.L. de Boer, J. Alloys Compd. 241
(1996) 34.
[12] N. Escalona, M. Vrinat, D. Laurenti, F.J. Gil Llambias, Appl. Catal. A: Gen. 322
(2007) 113.
[13] C.J.H. Jacobsen, E. TÖrnqvist, H. Topsøe, Catal. Lett. 63 (1999) 179.
[14] M. Breysse, E. Furimsky, S. Kasztelan, M. Lacroix, G. Perot, Catal. Rev. 44 (2002)
651.
[15] T.C. Ho, G.E. Markley, Appl. Catal. A: Gen. 267 (2004) 245.
[16] T.C. Ho, Q. Liang, J. Catal. 269 (2010) 291.
[17] I. Ignatiadis, M. Kuroki, P.J. Arpino, J. Chromatogr. 366 (1986) 251.
[18] S.D. Sumbogo Murti, H. Yang, K.H. Choi, Y. Korai, I. Mochida, Appl. Catal. A:
Gen. 252 (2003) 331.
[19] W. Kanda, I. Siu, J. Adjaye, A.E. Nelson, M.R. Gray, Energy Fuels 18 (2004) 539.
[20] T.C. Ho, Appl. Catal. A: Gen. 378 (2010) 52.
[21] T.C. Ho, J. Catal. 219 (2003) 442.
[22] A. Müller, E. Krickemeyer, H. Bögge, Z. Anorg. Allg. Chem. 554 (1987) 61.
[23] E. Furimsky, F.E. Massoth, Catal. Today 52 (1999) 381.
[24] T.C. Ho, J. Sobel, Catal. Lett. 99 (2005) 109.
[25] P. Steiner, E.A. Blekkan, Fuel Proc. Technol. 79 (2002) 1.
[26] E. Furimsky, F.E. Massoth, Catal. Rev. 47 (2005) 297.
[27] T.C. Ho, D. Nguyen, J. Catal. 222 (2004) 450.
[28] T.C. Ho, D. Nguyen, Chem. Eng. Commun. 193 (2006) 460.
[29] M.G. Choi, T.C. Ho, R.J. Angelici, Organometallics 27 (2008) 1098.
[30] S. Korre, M. Neurock, M.T. Klein, R.J. Quann, Chem. Eng. Sci. 49 (1994) 4191.
[31] E. Furimsky, F.E. Massoth, Catal. Rev. Sci. Eng. 47 (2005) 297–489.
[32] N. Escalona, J. Ojeda, P. Baeza, R. Garcia, J.M. Palacios, J.L.G. Fierro, A. Lopez
Agudo, F.J. Gil-Liambias, Appl. Catal. A: Gen. 287 (2005) 47.
[33] J. Ojeda, N. Escalona, J.M. Palacios, M. Yates, J.L.G. Fierro, A. Lopez Agudo, F.J.
Gil-Liambias, Appl. Catal. A: Gen. 350 (2008) 6.