Journal of the American Chemical Society
Page 10 of 12
136, 88; (b) Trost, B. M.; Stivala, C. E.; Fandrick, D. R.; Hull, K. L.;
Huang, A.; Poock, C.; Kalkofen, R. Total Synthesis of (−)-Lasonolide
A. J. Am. Chem. Soc. 2016, 138, 11690.
40. It is worth mentioning that the vinyl epoxide unit flanked by a masked
hydroxy group in amphidinolide V or the simple protected hydroxy
epoxide motif in amphidinolides K and P is relatively stable, see: (a)
Fürstner, A.; Larionov, O.; Flügge, S. What is Amphidinolide V?
Report on a Likely Conquest. Angew. Chem. Int. Ed. 2007, 46, 5545;
(b) Fürstner, A.; Flügge, S.; Larionov, O.; Takahashi, Y.; Kubota, T.;
Kobayashi, J. Total Synthesis and Biological Evaluation of
Amphidinolide V and Analogues. Chem. Eur. J. 2009, 15, 4011; (c)
Volchkov, I.; Lee, D. Asymmetric Total Synthesis of (−)-
Amphidinolide V through Effective Combinations of Catalytic
Transformations. J. Am. Chem. Soc. 2013, 135, 5324; (d) Williams,
D. R.; Meyer, K. G. Total Synthesis of (+)-Amphidinolide K. J. Am.
Chem. Soc. 2001, 123, 765; (e) Williams, D. R.; Myers, B. J.; Mi, L.
Total Synthesis of (−)-Amphidinolide P Org. Lett. 2000, 2, 945; (f)
Trost, B. M.; Papillon, J. P. N. Alkene-Alkyne Coupling as a Linchpin:
An Efficient and Convergent Synthesis of Amphidinolide P. J. Am.
Chem. Soc. 2004, 126, 13618.
1
2
3
4
5
6
7
8
28. (a) Trost, B. M.; Chisholm, J. D.; Wrobleski, S. T.; Jung, M. Rutheni-
um-Catalyzed Alkene-Alkyne Coupling:ꢀ Synthesis of the Proposed
Structure of Amphidinolide A. J. Am. Chem. Soc. 2002, 124, 12420;
(b) Trost, B. M.; Harrington, P. E. Structure Elucidation of (+)-
Amphidinolide A by Total Synthesis and NMR Chemical Shift
Analysis. J. Am. Chem. Soc. 2004, 126, 5028; (c) Trost, B. M.;
Harrington, P. E.; Chisholm, J. D.; Wrobleski, S. T. Total Synthesis of
(+)-Amphidinolide A. Structure Elucidation and Completion of the
Synthesis. J. Am. Chem. Soc. 2005, 127, 13598; (d) Trost, B. M.;
Wrobleski, S. T.; Chisholm, J. D.; Harrington, P. E.; Jung, M. Total
Synthesis of (+)-Amphidinolide A. Assembly of the Fragments. J. Am.
Chem. Soc. 2005, 127, 13589.
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
29. Nakamura, S.; Kikuchi, F.; Hashimoto, S. Total Synthesis of
Pinnatoxin A. Angew. Chem. Int. Ed. 2008, 47, 7091.
41. Heck, R. F.; Nolley, J. P. Palladium-catalyzed vinylic hydrogen
substitution reactions with aryl, benzyl, and styryl halides. J. Org.
Chem. 1972, 37, 2320.
42. Kobayashi, S.; Uchiro, H.; Fujishita, Y.; Shiina, I.; Mukaiyama, T.
Asymmetric aldol reaction between achiral silyl enol ethers and achiral
aldehydes by use of a chiral promoter system. J. Am. Chem. Soc.
1991, 113, 4247.
43. Dess, D. B.; Martin, J. C. Readily accessible 12-I-5 oxidant for the
conversion of primary and secondary alcohols to aldehydes and
ketones. J. Org. Chem. 1983, 48, 4155.
44. Vedejs, E.; Engler, D. A.; Telschow, J. E. Transition-metal peroxide
reactions. Synthesis of .alpha.-hydroxycarbonyl compounds from
enolates. J. Org. Chem. 1978, 43, 188.
45. Davis, F. A.; Vishwakarma, L. C.; Billmers, J. G.; Finn, J. Synthesis of
.alpha.-hydroxycarbonyl compounds (acyloins): direct oxidation of
enolates using 2-sulfonyloxaziridines. J. Org. Chem. 1984, 49, 3241.
46. Beshara, C. S.; Hall, A.; Jenkins, R. L.; Jones, K. L.; Jones, T. C.;
Killeen, N. M.; Taylor, P. H.; Thomas, S. P.; Tomkinson, N. C. O. A
General Method for the α-Acyloxylation of Carbonyl Compounds.
Org. Lett. 2005, 7, 5729.
47. Stanković, S.; Espenson, J. H. Oxidation of Methyl Trimethylsilyl
Ketene Acetals to α-Hydroxyesters with Urea Hydrogen Peroxide
Catalyzed by Methyltrioxorhenium. J. Org. Chem. 2000, 65, 5528.
48. McCormick, J. P.; Tomasik, W.; Johnson, M. W. α-Hydroxylation of
ketones: Osmium tetroxide/N-methylmorpholine-N-oxide oxidation
of silyl enol ethers. Tetrahedron Lett. 1981, 22, 607.
49. Davis, F. A.; Sheppard, A. C. Oxidation of silyl enol ethers using 2-
sulfonyloxaziridines. Synthesis of .alpha.-siloxy epoxides and .alpha.-
hydroxy carbonyl compounds. J. Org. Chem. 1987, 52, 954.
50. (a) Paterson, I.; Davies, R. D. M.; Marquez, R. Total Synthesis of the
Callipeltoside Aglycon. Angew. Chem. Int. Ed. 2001, 40, 603; (b)
Paterson, I.; Davies, R. D. M.; Heimann, A. C.; Marquez, R.; Meyer, A.
Stereocontrolled Total Synthesis of (−)-Callipeltoside A. Org. Lett.
2003, 5, 4477; (c) Hara, A.; Morimoto, R.; Iwasaki, Y.; Saitoh, T.;
Ishikawa, Y.; Nishiyama, S. Total Syntheses of Amphidinolides B, G,
and H. Angew. Chem. Int. Ed. 2012, 51, 9877.
30. (a) Trost, B. M.; Amans, D.; Seganish, W. M.; Chung, C. K. Total
Synthesis of Laulimalide: Assembly of the Fragments and Completion
of the Synthesis of the Natural Product and a Potent Analogue. Chem.
Eur. J. 2012, 18, 2961; (b) Trost, B. M.; Seganish, W. M.; Chung, C.
K.; Amans, D. Total Synthesis of Laulimalide: Synthesis of the
Northern and Southern Fragments. Chem. Eur. J. 2012, 18, 2948.
31. (a) Trost, B. M.; Cregg, J. J. Ruthenium-Catalyzed Alkene–Alkyne
Coupling of Disubstituted Olefins: Application to the Stereoselective
Synthesis of Trisubstituted Enecarbamates. J. Am. Chem. Soc. 2015,
137, 620; (b) Rummelt, S. M.; Cheng, G.-J.; Gupta, P.; Thiel, W.;
Fürstner, A. Hydroxy-Directed Ruthenium-Catalyzed Alkene/Alkyne
Coupling: Increased Scope, Stereochemical Implications, and
Mechanistic Rationale. Angew. Chem. Int. Ed. 2017, 56, 3599; (c)
Trost, B. M.; Sharif, E. U.; Cregg, J. J. Ru-catalyzed sequence for the
synthesis of cyclic amido-ethers. Chem. Sci. 2017, 8, 770.
32. Inanaga, J.; Hirata, K.; Saeki, H.; Katsuki, T.; Yamaguchi, M. A Rapid
Esterification by Means of Mixed Anhydride and Its Application to
Large-ring Lactonization. Bull. Chem. Soc. Jpn. 1979, 52, 1989.
33. (a) Hoveyda, A. H.; Evans, D. A.; Fu, G. C. Substrate-directable
chemical reactions. Chem. Rev. 1993, 93, 1307; (b) Adam, W.; Wirth,
T. Hydroxy Group Directivity in the Epoxidation of Chiral Allylic
Alcohols:ꢀ Control of Diastereoselectivity through Allylic Strain and
Hydrogen Bonding. Acc. Chem. Res. 1999, 32, 703.
34. Murray, R. W. Chemistry of dioxiranes. 12. Dioxiranes. Chem. Rev.
1989, 89, 1187.
35. Bradley, L. M.; Springer, J. W.; Delate, G. M.; Goodman, A.
Epoxidation of Geraniol: An Advanced Organic Experiment that
Illustrates Asymmetric Synthesis. J. Chem. Educ. 1997, 74, 1336.
36. (a) Sharpless, K. B.; Verhoeven, T. R. Metal-Catalyzed, Highly Selec-
tive Oxygenations of Olefins and Acetylenes with tert-Butyl Hydrop-
eroxide. Practical Considerations and Mechanisms. Aldrichimica Acta
1979, 12, 63; (b) Rossiter, B. E.; Verhoeven, T. R.; Sharpless, K. B.
Stereoselective epoxidation of acyclic allylic alcohols. A correction of
our previous work. Tetrahedron Lett. 1979, 20, 4733; (c) Paterson, I.;
De Savi, C.; Tudge, M. Total Synthesis of the Microtubule-Stabilizing
Agent (−)-Laulimalide. Org. Lett. 2001, 3, 3149; (d) Kanoh, N.;
Kawamata, A.; Itagaki, T.; Miyazaki, Y.; Yahata, K.; Kwon, E.;
Iwabuchi, Y. A Concise and Unified Strategy for Synthesis of the C1–
C18 Macrolactone Fragments of FD-891, FD-892 and Their
Analogues: Formal Total Synthesis of FD-891. Org. Lett. 2014, 16,
5216.
37. Lu, L.; Zhang, W.; Nam, S.; Horne, D. A.; Jove, R.; Carter, R. G.
Amphidinolide B: Total Synthesis, Structural Investigation, and
Biological Evaluation. J. Org. Chem. 2013, 78, 2213.
38. Itoh, T.; Jitsukawa, K.; Kaneda, K.; Teranishi, S. Vanadium-catalyzed
epoxidation of cyclic allylic alcohols. Stereoselectivity and
stereocontrol mechanism. J. Am. Chem. Soc. 1979, 101, 159.
39. Payne, G. B. A simplified procedure for epoxidation by benzonitrile-
hydrogen peroxide. Selective oxidation of 2-allylcyclohexanone.
Tetrahedron 1962, 18, 763.
51. Kronenthal, D. R.; Han, C. Y.; Taylor, M. K. Oxidative N-dearylation
of 2-azetidinones. p-Anisidine as a source of azetidinone nitrogen. J.
Org. Chem. 1982, 47, 2765.
52. (a) Bouzide, A.; Sauvé, G. Lewis Acid-Catalyzed Deprotection of p-
Methoxybenzyl Ether. Synlett 1997, 1153; (b) Cappa, A.;
Marcantoni, E.; Torregiani, E.; Bartoli, G.; Bellucci, M. C.; Bosco, M.;
Sambri, L. A Simple Method for the Selective Deprotection of p-
Methoxybenzyl Ethers by Cerium(III) Chloride Heptahydrate and
Sodium Iodide. J. Org. Chem. 1999, 64, 5696; (c) Falck, J. R.; Barma,
D. K.; Baati, R.; Mioskowski, C. Differential Cleavage of Arylmethyl
Ethers: Reactivity of 2,6-Dimethoxybenzyl Ethers. Angew. Chem. Int.
Ed. 2001, 40, 1281.
53. Li, Y.; Yin, X.; Dai, M. Catalytic macrolactonizations for natural
product synthesis. Nat. Prod. Rep. 2017, 34, 1185.
10
ACS Paragon Plus Environment