Biochemistry
ARTICLE
manganese peroxidase; DyP, dye-decolorizing peroxidase; TAT,
twin-arginine transport; LBP, lysogeny broth peptone; MWL, milled
wood lignin; HPLC, high-performance liquid chromatography.
(18) Nakatsubo, F., Sato, K., and Higuchi, H. (1975) Synthesis of
guaiacyldlycerol-β-guaiacyl ether. Holzforschung 29, 165–168.
(19) Zimmermann, W., Paterson, A., and Broda, P. (1988) Conven-
tional and high-performance size-exclusion chromatography of graminac-
eous lignin carbohydrate complexes. Methods Enzymol. 161, 191–199.
(
20) Zhang, Y., and Skolnick, J. (2005) TM-align: A protein
’
REFERENCES
structure alignment algorithm based on the TM-score. Nucleic Acids
(
1) Sustainable biofuels: Prospects and challenges, Report by the
Royal Society, January 2008.
2) Wong, D. W. S. (2009) Structure and action mechanism of
lignolytic enzymes. Appl. Biochem. Biotechnol. 157, 174–209.
3) Tien, M., and Kirk, T. K. (1984) Lignin-degrading enzyme from
Phanerochaete chrysosporium: Purification, characterization, and catalytic
Res. 33, 2302–2309.
(21) Gille, C., and Frommel, C. (2001) STRAP: Editor for STRuc-
tural Alignments of Proteins. Bioinformatics 17, 377–378.
(22) Larkin, M. A., Blackshields, G., Brown, N. P., Chenna, R.,
McGettigan, P. A., McWilliam, H., Valentin, F., Wallace, I. M., Wilm, A.,
Lopez, R., Thompson, J. D., Gibson, T. J., and Higgins, D. G. (2007)
Clustal W and clustal X version 2.0. Bioinformatics 23, 2947–2948.
(23) Bendtsen, J. D., Nielsen, H., von Heijne, G., and Brunak, S.
(2004) Improved prediction of signal peptides: SignalP 3.0. J. Mol. Biol.
340, 783–795.
(
(
2 2
properties of a unique H O -requiring oxygenase. Proc. Natl. Acad. Sci.
U.S.A. 81, 2280–2284.
(
4) Hammel, K. E., Tien, M., Kalyanaraman, B., and Kirk, T. K.
(
1984) Mechanism of oxidative C -C cleavage of a lignin model dimer
by Phanerochaete chrysosporium ligninase: Stoichiometry and involve-
ment of free radicals. J. Biol. Chem. 260, 8348–8353.
R
β
(24) Felsenstein, J. (1989) Phylip: Phylogeny inference package
(version 3.2). Cladistics 5, 164–166.
(
5) Miki, K., Renganathan, V., and Gold, M. H. (1986) Mechanism
(25) van der Geize, R., Hessels, G. I., van Gerwen, R., van der
Meijden, P., and Dijkhuizen, L. (2001) Unmarked gene deletion
mutagenesis of kstD, encoding 3-ketosteroid Δ -dehydrogenase, in
of β-aryl ether dimeric lignin model compound oxidation by lignin
peroxidase of Phanerochaete chrysosporium. Biochemistry 25, 4790–4796.
1
(
6) Glenn, J. K., Akileswaran, L., and Gold, M. H. (1986) Mn(II)
Rhodococcus erythropolis SQ1 using sacB as counter-selectable marker.
FEMS Microbiol. Lett. 205, 197–202.
oxidation is the principal function of the extracellular Mn peroxidase
from Phanerochaete chrysosporium. Arch. Biochem. Biophys. 251, 688–696.
(26) Bertani, G. (2004) Lysogeny at mid-twentieth century: P1, P2,
and other experimental, systems. J. Bacteriol. 186, 595–600.
(7) Wariishi, H., Dunford, H. B., MacDonald, I. D., and Gold, M. H.
(
1989) Manganese peroxidase from the lignin-degrading basidomycete
(27) Falk, J. E. (1964) Porphyrins and metalloporphyrins; their general,
physical and coordination chemistry, and laboratory methods, Elsevier
Publishing Co., Amsterdam.
Phanerochaete chrysosporium: Transient state kinetics and reaction
mechanism. J. Biol. Chem. 264, 3335–3340.
(
8) Tuor, U., Wariishi, H., Schoemaker, H. E., and Gold, M. H.
(28) Sugano, Y., Muramatsu, R., Ichiyanagi, A., Sato, T., and Shoda,
M. (2007) DyP, a unique dye-decolorizing peroxidase, represents a
novel heme peroxidase family: Asp-171 replaces the distal histidine of
classical peroxidases. J. Biol. Chem. 282, 36652–36658.
(
1992) Oxidation of phenolic arylglycerol β-aryl ether lignin model
compounds by manganese peroxidase from Phanerochaete chrysospor-
ium: Oxidative cleavage of an R-carbonyl model compound. Biochemistry
1, 4986–4995.
3
(29) Zubieta, C., Krishna, S. S., Kapoor, M., Kozbial, P., McMullan,
D., Axelrod, H. L., Miller, M. D., Abdubek, P., Ambing, E., Astakhova, T.,
Carlton, D., Chiu, H. J., Clayton, T., Deller, M. C., Duan, L., Elsliger,
M. A., Feuerhelm, J., Grzechnik, S. K., Hale, J., Hampton, E., Han, G. W.,
Jaroszewski, L., Jin, K. K., Klock, H. E., Knuth, M. W., Kumar, A.,
Marciano, D., Morse, A. T., Nigoghossian, E., Okach, L., Oommachen,
S., Reyes, R., Rife, C. L., Schimmel, P., van den Bedem, H., Weekes, D.,
White, A., Xu, Q., Hodgson, K. O., Wooley, J., Deacon, A. M., Godzik, A.,
Lesley, S. A., and Wilson, I. A. (2007) Crystal structures of two novel
dye-decolorizing peroxidases reveal a β-barrel fold with a conserved
heme-binding motif. Proteins 69, 223–233.
(30) Zubieta, C., Joseph, R., Krishna, S. S., McMullan, D., Kapoor,
M., Axelrod, H. L., Miller, M. D., Abdubek, P., Acosta, C., Astakhova, T.,
Carlton, D., Chiu, H. J., Clayton, T., Deller, M. C., Duan, L., Elias, Y.,
Elsliger, M. A., Feuerhelm, J., Grzechnik, S. K., Hale, J., Han, G. W.,
Jaroszewski, L., Jin, K. K., Klock, H. E., Knuth, M. W., Kozbial, P., Kumar,
A., Marciano, D., Morse, A. T., Murphy, K. D., Nigoghossian, E., Okach,
L., Oommachen, S., Reyes, R., Rife, C. L., Schimmel, P., Trout, C. V., van
den Bedem, H., Weekes, D., White, A., Xu, Q., Hodgson, K. O., Wooley,
J., Deacon, A. M., Godzik, A., Lesley, S. A., and Wilson, I. A. (2007)
Identification and structural characterization of heme binding in a novel
dye-decolorizing peroxidase, TyrA. Proteins 69, 234–243.
(
9) Kawai, S., Umezawa, T., and Higuchi, T. (1988) Degradation
mechanisms of phenolic β-1 lignin substructure model compounds by
laccase of Coriolus versicolor. Arch. Biochem. Biophys. 262, 99–110.
(
Borneman, S. (1997) Reactivities of various mediators and laccases with
Kraft pulp and lignin model compounds. Appl. Environ. Microbiol. 63,
10) Bourbonnais, R., Paice, M. G., Freiermuth, B., Bodie, E., and
4
627–4632.
11) Vicuna, R. (1988) Bacterial degradation of lignin. Enzyme
Microb. Technol. 10, 646–655.
12) Zimmermann, W. (1990) Degradation of lignin by bacteria.
J. Biotechnol. 13, 119–130.
13) Crawford, D., Pometto, A., III, and Crawford, R. (1983) Lignin
(
(
(
degradation by Streptomyces viridosporus: Isolation and charaterization of
a new polymeric lignin degradation intermediate. Appl. Environ. Micro-
biol. 45, 898–904.
(
14) Ramachandra, M., Crawford, D., and Hertel, G. (1988) Char-
acterization of an extracellular lignin peroxidase of the lignocellulolytic
actinomycete Streptomyces viridosporus. Appl. Environ. Microbiol. 54,
057–3063.
(
Bending, G. D., and Bugg, T. D. H. (2010) Development of novel assays
for lignin degradation: Comparative analysis of bacterial and fungal
lignin degraders. Mol. BioSyst. 6, 815–821.
3
15) Ahmad, M., Taylor, C. R., Pink, D., Burton, K., Eastwood, D.,
(31) Cao, J., Woodhall, M. R., Alvarez, J., Cartron, M. L., and Andrews,
S. C. (2007) EfeUOB (YcdNOB) is a tripartite, acid-induced and CpxAR-
2þ
(
16) Seto, M., Kimbara, K., Shimura, M., Hatta, T., Fukuda, M., and
regulated, low-pH Fe transporter that is cryptic in Escherichia coli K-12
but functional in E-coli O157:H7. Mol. Microbiol. 65, 857–875.
(32) Stearman, R., Yuan, D. S., Yamaguchi-Iwai, Y., Klausner, R. D.,
and Dancis, A. (1996) A permease-oxidase complex involved in high-
affinity iron uptake in yeast. Science 271, 1552–1557.
Yano, K. (1995) A novel transformation of polychlorinated biphenyls by
Rhodococcus sp. strain RHA1. Appl. Environ. Microbiol. 61, 3353–3358.
(
Myhre, M., Femandes, C., Miyazawa, D., Wong, W., Lillquist, A. L.,
Wang, D., Dosanjh, M., Hara, H., Petrescu, A., Morin, R. D., Yang, G.,
Stott, J. M., Schein, J. E., Shin, H., Smailus, D., Siddiqui, A. S., Marra,
M. A., Jones, S. J. M., Holt, R., Brinkman, F. S. L., Miyauchi, K., Fukuda,
M., Davies, J. E., Mohn, W. W., and Eltis, L. D. (2006) The complete
genome of Rhodococcus sp. RHA1 provides insights into a catabolic
powerhouse. Proc. Natl. Acad. Sci. U.S.A. 103, 15582–15587.
17) McLeod, M. P., Warren, R. L., Hsiao, W. W. L., Araki, N.,
(33) Sutter, M., Boehringer, D., Gutmann, S., G €u nther, S., Prangishvili,
D., Loessner, M. J., Stetter, K. O., Weber-Ban, E., and Ban, N. (2008)
Structural basis of enzyme encapsulation into a bacterial nanocompartment.
Nat. Struct. Mol. Biol. 15, 939–947.
(34) de Geus, D. C., Thomassen, E. A., Hagedoorn, P. L., Pannu,
N. S., van Duijn, E., and Abrahams, J. P. (2009) Crystal structure of
5
106
dx.doi.org/10.1021/bi101892z |Biochemistry 2011, 50, 5096–5107