Please do not adjust margins
ChemComm
Page 4 of 4
DOI: 10.1039/C7CC09035H
COMMUNICATION
Journal Name
a
Table 4. CsF-CaF
O
2
Mediated Trifluoromethylations.
1
2
(a) T. Furuya, A. S. Kamlet, T. Ritter, Nature, 2011, 473, 470;
(b) E. J. Cho, T. D. Senecal, T. Kinzel, Y. Zhang, D. A. Watson,
S. L. Buchwald, Science, 2010, 328, 1679; (c) T. Liang, C. N.
Neumann, T. Ritter, Angew. Chem. Int. Ed., 2013, 52, 8214;
(d) S. Purser, P. R. Moore, S. Swallow, V. Gouverneur, Chem.
Soc. Rev., 2008, 37, 320.
For references and citations therein, see: (a) C. C. Sazepin, R.
H/R
F3CSiMe3
R
+
1
mmol
(2 equiv)
OH
CF
3
H/R
DMF
CsF-CaF
2
BPR
R
Hemelaere, J.-F., Paquin, G. M. Sammis. Synthesis, 2015, 47
2554; (b) Q. Lefebvre, Synlett, 2017, 28, 19. (c) N. Shibata, A.
Matsnev, D. Cahard. Beilstein J. Org. Chem., 2010, , 65. (d)
,
V = 2 mL
Sample loop
Vvoid = 2.4 mL
After acidic workup
rt, r
T
= 5 min
6
OH
OH
CF
OH
C. N. Neumann, T. Ritter. Acc. Chem. Res., 2017, 50, 2822; (e)
X. Liu, C. Xu, M. Wang, Q. Liu. Chem. Rev., 2015, 15, 683. (f)
D. A. Watson, M. Su, G. Tevorovskiy, Y. Zhang, J. García-
Fortanet, T. Kinzel, S. L. Buchwald. Science, 2009, 325, 1661.
(a) D. J. Adams, J. H. Clark, Chem. Soc. Rev. 1999, 28, 225.; (b)
P. Richardson, Expert Opin. Drug. Discov. 2016, 11:10, 983.;
(c) D. E. Yerien, S. Bonesi, A. Postigo, Org. Biomol. Chem.
CF
3
3
3
CF
3
H
H
H
NMe
84% - 18
OH
Br
MeO
83% - 16
77% - 17
3
OH
OH
CF
3
CF
CF
3
MeO
MeO
H
H
2
016, 14, 8398
J. H. Clark. Chem. Rev., 1980, 80, 429.
(a) H. Sun, S. G. DiMagno, J. Am. Chem. Soc., 2005, 127
TsO
N
4
5
OMe
OMe
,
70% - 19
68% - 20
94% - 21
2
4
050; (b) H. Sun, S. G. DiMagno, Angew. Chem. Int. Ed. 2006,
, 2720.
O
5
Scale-out Synthesis of 21
6
(a) S. D. Schimler, S. J. Ryan, D. C. Bland, J. E. Anderson, M. S.
Sandford. J. Org. Chem., 2015, 80, 12137; (b) M. A, Cismesia,
S. J. Ryan, D. C. Bland, M. S. Sandford. J. Org. Chem. 2017, 82
5020; (c) S. Elias, N. Karton-Lifshin, L. Yehezkel, N. Ashkenazi,
I. Columbus, Y. Zafrani. Org. Lett., 2017, 19, 3039.
OH
CF
3
NC
,
CsF-CaF
2
BPR
0
.75 M - 22
+
V
void = 2.4 mL
rt, r = 2 min
2 minutes runtime
NC
F
3
CSiMe
2 equiv)
3
T
34 mmol, 94% - 21
(
7,4 grams
7
8
T. Noël, T. J. Maimone, S. L. Buchwald. Angew. Chem. Int. Ed.
2
4
011, 50, 8900.
(a) R. L. Hartman, J. P. McMullan, K. F. Jensen. Angew. Chem.
Int. Ed., 2011, 50, 7502; (b) J. Britton, C. L. Raston. Chem. Soc.
Rev., 2017, 46, 1250.
Ammonium anion affinity is higher for chloride and bromide
than for fluoride, see: S. D. Alexandratos. Ind. Eng. Chem.
Res., 2009, 48, 388.
a
See ESI for specific reaction details for each entry.
In conclusion, a simple to prepare, store and handle
continuous flow packed bed reactor carrying cesium fluoride
loaded onto a calcium fluoride support has been developed.
9
Efficient in-line water removal from the CsF-CaF
2
support was 10 A Similar concept has been utilized in the Finkelstein
reaction, see: M. Chen, S. Ichikawa, S. L. Buchwald. Angew.
Chem. Int. Ed., 2015, 54, 263.
accomplished by passing superheated solvents through the
reactor, thereby avoiding the need for glovebox handling of
hygroscopic metal fluoride salts. As the reaction mixture is
continuously passed on to sections with higher fluoride
concentrations any unfavourable halide exchange equilibriums
are eliminated. The reactor was applied in nucleophilic fluoride
substitution reactions of benzylic bromides and the more
1
1
1 (a) J-M. Clacens, D. Genuit, B. Veldurthy, G. Bergeret, L.
Delmotte, A. Garcia-Ruiz, F. Figueras. Appl. Catal., B, 2004,
53, 95; (b) T. Ando, J. Yamawaki, T. Kawate, S. Sumi, T.
Hanafusa. Bull. Chem. Soc. Jpn., 1982, 55, 2504.
2 (a) J. H. Clark, Hyde, A. J. Hyde, Smith, D. K. J. Chem. Soc.
Chem. Commun. 1986, 791; (b) J. H. Clark, E. M. Goodman, D.
K. Smith, S. J. Brown, J. M. Miller. J. Chem. Soc., Chem.
Commun., 1986, 657.
challenging
nucleophilic
aromatic
substitution
of
chloro(hetero)aromates. Fluoride accessibility was determined 13 We thank Solvay for the gift of the CaF used in this study.
2
by a scale-out experiment and only a loading of 2 equivalents 14 Leaching of fluoride from the PBR is expected to occur in
correlation to the solubility of CsF in specific solvents and
2
of CsF is required. The CsF-CaF packed bed reactor also
due to the presence of the TBACl phase transfer catalyst.
5 When performing these reactions using a PBR packed with
pure CaF only trace fluorination is observed (<2%).
2
proved highly adaptable towards classical deprotection of silyl
ethers with residence times down to 5 minutes. Finally, CsF-
1
CaF
were performed with excellent isolated yields. Scale-out of the
trifluoromethylation of 4-cyanoacetophenone, with
2
mediated trifluoromethylation of aldehydes and ketones 16 (a) M. Baumann, I. R. Baxendale, L. J. Martin, S. V. Ley.
Tetrahedron, 2009, 65, 6611; (b) T. Gustafsson, R. Gilmour, P.
H. Seeberger, Chem. Commun. 2008, 3022; (c) M. Baumann,
I. R. Baxendale, S. V. Ley. Synlett, 2008, 14, 2111.
a
residence time of 2 minutes at room temperature, afforded
more than 7 grams of the desired product in only 42 minutes.
1
2
7 In-line regeneration of the CsF-CaF PBR has not been
attempted, but could potentially be performed by passing a
saturated solution of TBAF thorough the reactor.
8 M. O´Brien, L. Konings, M. Martin, J. Heap. Tetrahedron Lett.
2017, 58, 2409.
9 T. Saito, S. M. Morimoto, C. Akiyama, T. Ochiai, K. Takeuchi,
T. Matsumoto, K. Suzuki. J. Am. Chem. Soc. 1998, 120, 11633.
0 For a few examples on trifluoromethylations using Ruppert’s
reagent in flow, see: S. Okusu, K. Hirano, Y. Yasuda, E.
1
1
2
Conflicts of interest
There are no conflicts to declare.
Tokunaga, N. Shibata. RSC. Adv., 2016, 6, 82716.; M.
Baumann, I. R. Baxendale. Synlett, 2016, 27, 159.
Notes and references
4
| J. Name., 2012, 00, 1-3
This journal is © The Royal Society of Chemistry 20xx
Please do not adjust margins