Please do not adjust margins
ChemComm
DOI: 10.1039/C6CC00011H
Journal Name
COMMUNICATION
nitroarenes with quite challenging reducible functional groups, Anhui Province (1408085MB23), the Recruitment Program of
including nitrile, aldehyde and ketone (entry 15-17), giving the Global Youth Experts and the Fundamental Research Funds for
only product of corresponding anilines while the reducible the Central Universities (WK2060190026).
functional groups were unchanged. This result further
2 3
highlights the chemoselectivity of this γ-Fe O -based
Notes and references
nanocatalyst, displaying remarkable advantage compared to
that of noble metal-based catalysts. Moreover, the
hydrogenation of heteroaromatic nitro compounds was also
investigated, among which although the reduction of
1
(a) N. Ono, The Nitro Group in Organic Synthesis, Wiley-VCH,
New York, 2001; (b) R. S. Downing, P. J. Kunkeler and H. van
Bekkum, Catal. Today, 1997, 37, 121; (c) H.-U. Blaser, H.
Steiner and M. Studer, ChemCatChem, 2009,
(a) S. Nishimura, Heterogeneous Catalytic Hydrogenation
John Wiley Sons, 2001); (b) B. Cornils and W. A.
Herrmann, Applied Homogeneous Catalysis with
1, 210.
2
2-chloro-3-nitropyridine and 2-hydroxy-5-nitropyridine were
(
&
relatively slow (62% and 69% conversion in 12 h, respectively),
the reaction selectivity for all substrates is as high as 100%
Organometallic Compounds (Wiley-VCH, ed. 2, Weinheim,
Germany, 2002).
(entry 18-20). In addition to the efficient and chemoselective
conversion for the reduction of substituted nitroarenes above,
we turned our interests to aliphatic nitro compounds (entry
3
4
5
(a) A. Corma and P. Serna, Science, 2006, 313, 332; (b) A.
Grirrane, A. Corma and H. García, Science, 2008, 322, 1661;
(
c) S.-C. Li and U. Diebold, J. Am. Chem. Soc., 2010, 132, 64;
d) X. Liu, H.-Q. Li, S. Ye, Y.-M. Liu, H.-Y. He and Y. Cao,
Angew. Chem. Int. Ed., 2014, 53, 7624.
2
1-22). In the presence of Fe-500-1h, aliphatic nitro
(
compounds were able to be reduced to the corresponding
aliphatic amines with high conversion, again manifesting that
the Fe-500-1h is effective for the hydrogenation of diverse
substrates, both aromatic and aliphatic nitro compounds.
(a) A. Corma, P. Serna, P. Concepción and J. J. Calvino, J. Am.
Chem. Soc., 2008, 130, 8748; (b) A. M. Tafesh and J.
Weiguny, Chem. Rev., 1996, 96, 2035; (c) E. Boymans, S.
Boland, P. T. Witte, C. Müller and D. Vogt, ChemCatChem,
Based on the above results,
mechanism for the reduction of nitrobenzene catalyzed by
γ-Fe NPs encapsulated in porous carbon can be proposed
Scheme S1, ESI†). Nitrobenzene is firstly reduced to
nitrosobenzenze, and then rapidly converted to
a possible three-step
2
013,
(a) J. Lee, D. H. K. Jackson, T. Li, R. E. Winans, J. A. Dumesic,
T. F. Kuech and G. W. Huber, Energy Environ. Sci., 2014,
1657; (b) Z. Wei, J. Wang, S. Mao, D. Su, H. Jin, Y. Wang, F.
Xu, H. Li and Y. Wang, ACS Catal., 2015, , 4783. (c) R. V.
5, 431.
2
O
3
7,
5
d
(
5
Jagadeesh, A.-E. Surkus, H. Junge, M.-M. Pohl, J. Radnik, J.
Rabeah, H. Huan, V. Schünemann, A. Brückner and M. Beller,
Science, 2013, 342, 1073. (d) R. K. Rai, A. Mahata, S.
Mukhopadhyay, S. Gupta, P.-Z. Li, K. T. Nguyen, Y. Zhao, B.
Pathak and S. K. Singh, Inorg. Chem., 2014, 53, 2904.
phenylhydroxylamine. The two steps above possess fast
reaction kinetics. Finally, the intermediate transforms directly
to final product and this step is considered to be the
rate-determining step. Moreover, the Fe-500-1h catalyst
featuring hierarchical pores, as demonstrated by pore size
analysis (Fig. S3b, ESI†), might facilitate the transportation of
substrates, intermediates and products. In this case, diverse
functionalized nitro compounds can be reduced to the
corresponding amines under mild conditions.
6
7
(a) J. R. Long and O. M. Yaghi, Chem. Soc. Rev., 2009, 38,
1
2
213; (b) H.-C. Zhou, J. R. Long and O. M. Yaghi, Chem. Rev.,
012, 112, 673; (c) H.-C. Zhou and S. Kitagawa, Chem. Soc.
Rev., 2014, 43, 5415.
(a) T. K. Kim, K. J. Lee, J. Y. Cheon, J. H. Lee, S. H. Joo and H.
R. Moon, J. Am. Chem. Soc., 2013, 135, 8940; (b) S. Ma, G. A.
Goenaga, A. V. Call and D.-J. Liu, Chem. Eur. J., 2011, 17
2
Chem. Commun., 2015, 51, 8292; (d) Y.-Z. Chen, C. Wang,
Z.-Y. Wu, Y. Xiong, Q. Xu, S.-H. Yu and H.-L. Jiang, Adv.
Mater., 2015, 27, 5010; (e) S. Zhao, H. Yin, L. Du, L. He, K.
Zhao, L. Chang, G. Yin, H. Zhao, S. Liu and Z. Tang, ACS Nano
,
063; (c) Y.-X. Zhou, Y.-Z. Chen, L. Cao, J. Lu and H.-L. Jiang,
In summary, we have developed a highly efficient, low-cost,
2 3
and magnetically recyclable γ-Fe O @porous carbon
nanocatalyst for the hydrogenation of nitro compounds, via a
facile pyrolysis of a representative MOF, Fe-MIL-88A. The small
2 3
γ-Fe O NPs are well dispersed inside the porous carbon, which
2
014,
ACS Catal., 2015,
and Q. Xu, Energy Environ. Sci., 2015,
Liu, H. Shioyama, T. Akita and Q. Xu. J. Am. Chem. Soc., 2008,
130, 5390; (i) E. Kim and M. Yoon, J Porous Mater., 2015, 22
1495; (j) X. Yang, Y.-B. Tang, X. Huang, H. T. Xue, W. P. Kai,
W. Y. Li, T.-W. Ng and C.-S. Lee, J. Power Sources, 2015, 284
8
, 12660; (f) W. Zhong, H. Liu, C. Bai, S. Liao and Y. Li,
, 1850; (g) W. Xia, A. Mahmood, R. Zou
, 1837-1866; (h) B.
effectively limits the aggregation and growth of the
high-density NPs with an average size of ca. 6-10 nm and
facilitates the transportation of substrates, intermediates and
products. Remarkably, this non-noble metal oxide-based
nanocomposite behaves as efficient and stable catalyst for the
hydrogenation of a variety of substituted aromatic or aliphatic
nitro compounds, into their corresponding amines. More
importantly, in addition to the tolerance to general groups, the
catalyst exhibits high chemoselectivity to the reducible groups,
5
8
,
,
1
2
09; (k) F. Zheng, M. He, Y. Yang and Q. Chen, Nanoscale,
015, , 3410; (l) A. Banerjee, V. Aravindan, S. Bhatnagar, D.
7
Mhamane, S. Madhavi and S. Ogale, Nano Energy, 2013, 2,
890; (m) J.-D. Xiao, L.-G. Qiu, X. Jiang, Y.-J. Zhu, S. Ye and X.
Jiang, Carbon, 2013, 59, 372; (n) G. Huang, F. Zhang, L.
Zhang, X. Du, J. Wang and L. Wang, J. Mater. Chem. A., 2014,
2 3
including nitrile, aldehyde and ketone, etc. The γ-Fe O -based
nanocatalyst is readily recycled with an external magnet and
can be reused for at least 10 times without any loss of activity.
This study provides a versatile platform based on MOFs to
introduce active metal/metal oxide species highly dispersed
inside porous carbon matrix with targeted and improved
performance toward diverse catalytic reactions.
2
, 8048.
8
9
1
(a) S. Surblé, C. Serre, C. Mellot-Draznieks, F. Millange and G.
Férey, Chem. Commun., 2006, 284; (b) H. J. Lee, W. Cho, E.
Lim and M. Oh, Chem. Commun., 2014, 50, 5476.
(a) K. Woo, H. J. Lee, J. P. Ahn and Y. S. Park, Adv. Mater.,
2003, 15, 1761; (b) D.-H. Liu, Y. Guo, L.-H. Zhang, W.-C. Li, T.
Sun and A.-H. Lu, Small, 2013, , 3852.
9
M. Descostes, F. Mercier, N. Thromat, C. Beaucaire and M.
Gautier-Soyer, Appl. Surf. Sci., 2000, 165, 288.
This work is supported by the NSFC (21371162, 51301159
and 21521001), the 973 program (2014CB931803), NSF of
0
This journal is © The Royal Society of Chemistry 20xx
J. Name., 2013, 00, 1-3 | 4
Please do not adjust margins