In addition, IR spectra of 1 before ultrasound irradiation and the
xerogel of 1 are almost identical, suggesting that chemical
reaction did not occur during the ultrasound irradiation. Powder
X-ray diffraction patterns of 1 before the ultrasonification and
the xerogels of 1 are included in Fig. 6. Xerogel of 1 exhibits clear
diffraction patterns due to the crystalline structure. Maximum of
the diffraction intensity was observed at 2y = 23.61 (d = 3.8 A)
for the CH2Cl2 gel, which may correspond to intermolecular p–p
stacking in the same manner as macrocycle 2 in the crystal. This
result indicated that structurally regulated aggregation via p–p
stacking between the macrocycles is an important factor in the
gelation of 1. Crystals of 2 show a complex diffraction pattern
compared with the xerogels, and their major peaks are similar to
that of xerogel from CH2Cl2. The obtained one-dimensional
aggregates from CH2Cl2 may have a three-dimensional structure
similar to 2.
Soc., 2006, 128, 6576; (b) K. Nakao, M. Nishimura, T. Tamachi,
Y. Kuwatani, H. Miyasaka, T. Nishinaga and M. Iyoda, J. Am.
Chem. Soc., 2006, 128, 16740; (c) S.-H. Jung, W. Pisula,
A. Rouhanipour, H. J. Rader, J. Jacob and K. Mullen, Angew.
¨
Chem., Int. Ed., 2006, 45, 4685; (d) M. Fritzsche, A. Bohle,
¨
D. Dudenko, U. Baumeister, D. Sebastiani, G. Richardt,
H. W. Spiess, M. R. Hansen and S. Hoger, Angew. Chem., Int.
Ed., 2011, 50, 3030.
¨
3 (a) H. Kanazawa, M. Higuchi and K. Yamamoto, J. Am. Chem.
Soc., 2005, 127, 16404; (b) D. Wang, J. F. Hsu, M. Bagui,
V. Dusevich, Y. Wang, Y. Liu, A. J. Holder and Z. Peng, Tetra-
hedron Lett., 2009, 50, 2147; (c) H. Norouzi-Arasi, W. Pisula,
A. Mavrinskiy, X. Feng and K. Mullen, Chem.–Asian J., 2011,
6, 367.
¨
4 T. Ide, D. Takeuchi, K. Osakada, T. Sato and M. Higuchi, J. Org.
Chem., 2011, 76, 9504.
5 Crystal data for 2: C90H84N42: M = 1221.68, monoclinic,
space group P21/n (no. 14), a = 9.424(14) A, b = 17.14(3) A,
c = 23.45(4) A, b = 91.541(18)1, V = 3786(10) A3, Z = 2,
Dx = 1.072, 31 070 reflections measured, 8020 unique reflections,
1709 observations (I 4 2.0s(I)), R = 0.1181 (I 4 2.0s(I)),
Rw = 0.2957 (I 4 2.0s(I)). CCDC 836760. Low quality of the
crystals hindered discussion of detailed bond parameters of the
compound.
Sol–gel transition induced by change of temperature and pH
as well as photoirradiation was reported. These physical
stimuli reorganize interactions such as hydrogen bonds, p–p
and CH–p interactions, and van der Walls interactions
between the molecules, forming the network structure suited
for gelation.10 Solution of various compounds and their
mixture was reported to form gels upon ultrasonification.11–16
Most of them are caused by change of conformation of the
molecules or of the intermolecular interaction of local functional
groups. Macrocycle 1 undergoes ultrasound-induced gelation,
and it is based on formation of fibrous aggregates of the
molecules during the irradiation.
6 S. Grimme, J. Comput. Chem., 2006, 27, 1787.
7 A. Schafer, C. Huber and R. Ahlrichs, J. Chem. Phys., 1994,
¨
100, 5829.
8 M. J. Frisch, et al., Gaussian 09, Revision B.01, Gaussian, Inc.,
Wallingford CT, 2010. A full reference may be found in ESIw.
9 Interaction energy of the benzene–diphenylethyne p–p complex is
ꢁ18.3 kJ molꢁ1 and the benzene–benzene parallel-displaced stacking
p–p complex is ꢁ11.2 kJ molꢁ1 at the B97-D/TZVP level of theory.
10 (a) T. Saji, K. Hoshino, Y. Ishii and M. Goto, J. Am. Chem. Soc.,
1991, 113, 450; (b) K. Murata, M. Aoki, T. Suzuki, T. Harada,
H. Kawabata, T. Komori, F. Ohseto, K. Ueda and S. Shinkai,
In summary, macrocycles 1 with twisted biphenyl-2,20-diimine
units and 2 composed of a planar core and orthogonal 9,10-
dihydrophenanthrene groups at the two acute corners aggregate
linearly in the crystals or gel. A rhomboid core composed of
p-conjugated groups and 9,10-dihydrophenanthrene side
group of 2 forms the columnar aggregates and their bundles,
as observed by X-ray crystallography. Detailed aggregated
structures of 1 are not clear but formation of the fibrous
structure, observed in the gels formed by ultrasonification, is
attributed to linear aggregation of the molecules via p–p and
CH–p interactions.
We thank Dr Daling Lu of the Chemical Resources
Laboratory, Tokyo Institute of Technology for SEM measure-
ments. We also thank Prof. Shigeru Machida of Tokyo
National College of Technology for optical microscope and
photophysical measurements. This work was supported by the
Global COE Program ‘‘Education and Research Center for
Emergence of New Molecular Chemistry’’. T. I. acknowledges
Research Fellowship for Young Scientists from Japan Society
for the Promotion of Science.
J. Am. Chem. Soc., 1994, 116, 6664; (c) L. Frkanec, M. Jokic
´
,
J. Makarevic, K. Wolsperger and M. Zinic, J. Am. Chem. Soc.,
´
´
2002, 124, 9716; (d) K. J. C. van Bommel, C. van der Pol,
I. Muizebelt, A. Friggeri, A. Heeres, A. Meetsma, B. L. Feringa
and J. van Esch, Angew. Chem., Int. Ed., 2004, 43, 1663;
(e) K. Tsuchiya, Y. Orihara, Y. Kondo, N. Yoshino, T. Ohkubo,
H. Sakai and M. Abe, J. Am. Chem. Soc., 2004, 126, 12282;
(f) M. Yamanaka, N. Haraya and S. Yamamichi, Chem.–Asian
J., 2011, 6, 1022.
11 (a) Y. Li, T. Wang and M. Liu, Tetrahedron, 2007, 63, 7468;
(b) K. Isozaki, H. Takaya and T. Naota, Angew. Chem., Int. Ed.,
2007, 46, 2855; (c) D. Bardelang, F. Camerel, J. C. Margeson,
D. M. Leek, M. Schmutz, M. B. Zaman, K. Yu, D. V. Soldatov,
R. Ziessel, C. I. Ratcliffe and J. A. Ripmeester, J. Am. Chem. Soc.,
2008, 130, 3313; (d) J. Wu, T. Yi, T. Shu, M. Yu, Z. Zhou, M. Xu,
Y. Zhou, H. Zhang, J. Han, F. Li and C. Huang, Angew. Chem.,
Int. Ed., 2008, 47, 1063.
12 (a) C. Wang, D. Zhang and D. Zhu, J. Am. Chem. Soc., 2005,
127, 16372; (b) M. Yamanaka, T. Nakamura, T. Nakagawa and
H. Itagaki, Tetrahedron Lett., 2007, 48, 8990; (c) C. Baddeley,
Z. Yan, G. King, P. M. Woodward and J. D. Badjic, J. Org.
´
Chem., 2007, 72, 7270; (d) S. M. Park and B. H. Kim, Soft Matter,
2008, 4, 1995.
13 Y. Wang, C. Zhan, H. Fu, X. Li, X. Sheng, Y. Zhao, D. Xiao,
Y. Ma, J. S. Ma and J. Yao, Langmuir, 2008, 24, 7635.
14 (a) Y. He, Z. Bian, C. Kang, R. Jin and L. Gao, New J. Chem.,
2009, 33, 2073; (b) X. Chen, Z. Huang, S.-Y. Chen, K. Li, X.-Q. Yu
and L. Pu, J. Am. Chem. Soc., 2010, 132, 7297.
Notes and references
15 (a) T. Naota and H. Koori, J. Am. Chem. Soc., 2005, 127, 9324;
(b) S. Zhang, S. Yang, J. Lan, Y. Tang, Y. Xue and J. You, J. Am.
Chem. Soc., 2009, 131, 1689.
¨
1 (a) S. Hoger, Chem.–Eur. J., 2004, 10, 1320; (b) W. Zhang and
J. S. Moore, Angew. Chem., Int. Ed., 2006, 45, 4416; (c) M. Iyoda,
Pure Appl. Chem., 2010, 82, 831.
16 K. M. Anderson, G. M. Day, M. J. Paterson, P. Byrne, N. Clarke
and J. W. Steed, Angew. Chem., Int. Ed., 2008, 47, 1058.
2 (a) K. Balakrishnan, A. Datar, W. Zhang, X. Yang, T. Naddo,
J. Huang, J. Zuo, M. Yen, J. S. Moore and L. Zang, J. Am. Chem.
c
280 Chem. Commun., 2012, 48, 278–280
This journal is The Royal Society of Chemistry 2012