C. F. Barbas, III, J. Am. Chem. Soc., 2006, 128, 734–735; (d) N. Mase,
K. Watanabe, H. Yoda, K. Takabe, F. Tanaka and C. F. Barbas, III,
J. Am. Chem. Soc., 2006, 128, 4966–4967. For other examples, see: (e)
K. Sakthivel, W. Notz, T. Bui and C. F. Barbas, III, J. Am. Chem. Soc.,
2001, 123, 5260–5267; (f) A. Co´rdova, W. Notz and C. F. Barbas, III,
Chem. Commun., 2002, 3024–3025; (g) W. Zhang, M. Marigo and
K. A. Jørgensen, Org. Biomol. Chem., 2005, 3, 3883–3885; (h) Y.-S. Wu,
W.-Y. Shao, C.-Q. Zheng, Z.-L. Huang, J. Cai and Q.-Y. Deng, Helv.
Chim. Acta, 2004, 87, 1377–1384; (i) S. S. Chimni, D. Mahajan and
V. V. S. Babu, Tetrahedron Lett., 2005, 46, 5617–5619; (j) Ramachary,
N. S. Chowdari and C. F. Barbas, III, Tetrahedron Lett., 2002, 43,
6743–6746.
were obtained in good yields (64–99%) and showed excellent
diastereoselectivity (syn : anti ¢94 : 6) and enantioselectivity
(¢91% ee) (Table 2, entries 1–9). The stereoselectivities are
comparable with those of the reactions catalyzed by Kotsuki’s
pyrrolidine-pyridines in organic solvent12c and our previous results
with chiral ionic-liquid catalysis under neat conditions.6 Most
recently, Takabe and co-workers reported a diamine–TFA
catalytic system for asymmetric Michael reaction in brine.3d In
comparison, our surfactant-type catalyst 3c demonstrated clearly
better stereoselectivity than Takabe’s catalyst in most of the cases
examined. For example, Takabe reported optimized 89% ee and
syn : anti 95 : 5 for the reaction of cyclohexanone and
b-nitrostyrene, while in our case the reaction catalyzed by 3c gave
97% ee and syn : anti 97 : 3 (Table 2, entry 1).
4 T. Dwars, E. Paetzold and G. Oehme, Angew. Chem., Int. Ed., 2005, 44,
7174–7199.
5 (a) Y.-Y. Peng, Q.-P. Ding, Z. Li, P. G. Wang and J.-P. Cheng,
Tetrahedron Lett., 2003, 44, 3871–3875; (b) P. Dziedzic, W. Zou,
J. Ha´fren and A. Co´rdova, Org. Biomol. Chem., 2006, 4, 38–40.
6 S. Luo, X. Mi, L. Zhang, S. Liu, H. Xu and J.-P. Cheng, Angew. Chem.,
Int. Ed., 2006, 45, 3093.
7 (a) Z. Miskolczy, K. Sebo˝k-Nagy, L. Biczo´k and S. Go¨ ktu¨rk, Chem.
Phys. Lett., 2004, 400, 296–300; (b) J. Sirieix-Ple´net, L. Gaillon and
P. Letellier, Talanta, 2004, 63, 979–986; (c) P. Wasserscheid, R. V. Hal
and A. Bo¨smann, Green Chem., 2002, 4, 400–404.
8 (a) K. Manabe, Y. Mori, T. Wakabayashi, S. Nagayama and
S. Kobayashi, J. Am. Chem. Soc., 2000, 122, 7202–7207; (b)
K. Manabe, S. Limura, X.-M. Sun and S. Kobayashi, J. Am. Chem.
Soc., 2002, 124, 11971–11978 and references therein.
9 (a) S. Otto, J. B. F. N. Engberts and J. C. T. Kwak, J. Am. Chem. Soc.,
1998, 120, 9517–9525; (b) T. Rispens and J. B. F. N. Engberts, Org.
Lett., 2001, 3, 941–943.
Acyclic ketone donors such as acetone have also been tested
under the optimized conditions but with little success. The reaction
of acetone with b-nitrostyrene resulted in trace product with most
of the starting material decomposed.17 Preliminary studies
indicated that the reaction worked with aldehyde donors such as
isovaleraldehyde (Table 2, entry 10). The Michael addition of
isovaleraldehyde to nitrostyrene gave the desired product in good
yield, high diastereoselectivity (syn : anti= 97 : 3) and moderate
enantioselectivity (61% ee).
Generally, the desired products were gradually precipitated or
separated from the water solution. In cases where phase separation
did not occur at the end of the reaction, the product phase could
be separated by centrifuging the mixture for a while. Therefore, the
Michael products could be separated from the bulk water without
using any organic solvent.
10 (a) S. Kobayashi, Y. Mori, S. Nagayama and K. Manabe, Green Chem.,
1999, 175–177; (b) S. Azoulay, K. Manabe and S. Kobayashi, Org.
Lett., 2005, 7, 4593–4595.
11 (a) M. J. Diego-Castro and H. C. Hailes, Chem. Commun., 1998,
1549–1550; (b) H. J. Li, H. Y. Tiang, Y. J. Chen, D. Wang and C. J. Li,
J. Chem. Res. (S), 2003, 153–156. For other examples see ref. 4.
12 For Michael reaction in aqueous media, see: J. B. F. N. Engberts,
B. L. Feringa, E. Keller and S. Otto, Recl. Trav. Chim. Pays-Bas, 1996,
115, 457–464. For examples of asymmetric organocatalytic Michael
addition to nitrostyrenes, see: (a) D. Enders and A. Seki, Synlett, 2002,
26; (b) O. Andrey, A. Alexakis, A. Tomassini and G. Bernardinelli, Adv.
Synth. Catal., 2004, 346, 1147–1168; (c) T. Ishii, S. Fujioka, Y. Sekiguchi
and H. Kotsuki, J. Am. Chem. Soc., 2004, 126, 9558–9559; (d) W. Wang,
J. Wang and H. Li, Angew. Chem., Int. Ed., 2005, 44, 1369; (e)
Y. Hayashi, H. Gotoh, T. Hayashi and M. Shoji, Angew. Chem., Int.
Ed., 2005, 44, 4212–4215; (f) Y. Xu and A. Co´rdova, Chem. Commun.,
2006, 460–462; (g) S. B. Tsogoeva and S. Wei, Chem. Commun., 2006,
1451–1453; (h) H. Huang and E. N. Jacobsen, J. Am. Chem. Soc., 2006,
128, 7170–7171; (i) J. Wang, H. Li, B. Lou, L. Zu, H. Guo and
W. Wang, Chem.–Eur. J., 2006, 12, 4321–4332; (j) J. M. Betacort,
K. Sakthivel, R. Thayumanavan, F. Tanaka and C. F. Barbas, III,
Synthesis, 2004, 1509–1521; (k) A. J. A. Cobb, D. A. Longbottom,
D. M. Shaw and S. V. Ley, Chem. Commun., 2004, 1808–1809; (l) Y. Xu,
W. Zou, H. Sunde´n, I. Ibrahem and A. Co´rdova, Adv. Synth. Catal.,
2006, 348, 418–424; (m) M.-K. Zhu, L.-F. Cun, A.-Q. Mi, Y.-Z. Jiang
and L.-Z. Gong, Tetrahedron: Asymmetry, 2006, 17, 491–493; (n)
S. Mosse, M. Laars, K. Kriis, T. Kanger and A. Alexakis, Org. Lett.,
2006, 8, 2559–2562.
13 Nitrostyrenes are prone to anionic polymerization under basic
conditions or certain Michael addition conditions: (a) M. E. Carter,
J. L. Nash, J. W. Drueke, J. W. Schwietert and G. B. Butler, J. Polym.
Sci., Polym. Chem. Ed., 1978, 16, 937; (b) C. Suba, M. E. Miyazymbetov
and D. H. Evans, Electrochim. Acta, 1997, 42, 2247–2255.
14 S. Narayan, J. Muldoon, M. G. Finn, V. V. Fokin, H. C. Kolb and
K. B. Sharpless, Angew. Chem., Int. Ed., 2005, 44, 3275–3279.
15 S. Otto and J. B. F. N. Engberts, Org. Biomol. Chem., 2003, 1,
2809–2820.
16 D. Seebach and J. Golinski, Helv. Chim. Acta, 1981, 64, 1413–1423.
17 The reason for the failure of the reaction involving acetone is presently
unclear. One of the referees suggested it might relate to interfacial
catalysis as acetone is water-miscible.
18 During the preparation of this manuscript, Takabe and co-workers
reported asymmetric organocatalytic Michael addition in brine using
chiral diamine–TFA catalysis: see ref. 3d.
To conclude, we have developed surfactant-type asymmetric
organocatalysts (STAOs) that were demonstrated to be efficient
asymmetric organocatalysts in pure water with no need of any
organic solvents or additional additives. The catalysts (e.g. 3c)
could catalyze Michael addition to nitroalkenes with high
reactivity and excellent diastereoselectivity and enantioselectivity
in water.18 Further studies on broadening the scope of surfactant-
type asymmetric organocatalysts in water and on developing
reusable STAOs are currently under way in our laboratory and
will be reported in due course.
This work was supported by the Natural Science Foundation of
China (NSFC 20452001, 20421202 and 20542007), the Ministry of
Science and Technology (MoST) and the Institute of Chemistry,
Chinese Academy of Sciences (ICCAS). We thank Prof. Mei-xiang
Wang for the access to HPLC.
Notes and references
1 For reviews on organic reactions in aqueous media, see: (a) Organic
Synthesis in Water, ed. P. A. Grieco, Blackie A & P, London, 1998; (b)
U. M. Lindstrom, Chem. Rev., 2002, 102, 2751; (c) S. Kobayashi and
K. Manabe, Acc. Chem. Res., 2002, 35, 209; (d) C.-J. Li, Chem. Rev.,
2005, 105, 3095 and references therein.
2 For selected reviews of organocatalysis, see: (a) P. I. Dalko and
L. Moisan, Angew. Chem., Int. Ed., 2004, 43, 5138; (b) A. Berkessel and
H. Groger, Asymmetric Organocatalysis, Wiley-VCH, Weinheim, 2005;
(c) J. Seayad and B. List, Org. Biomol. Chem., 2005, 3, 719–724; (d)
M. Movassaghi and E. N. Jacobsen, Science, 2002, 298, 1904–1905.
3 For recent successful examples of asymmetric organocatalysis in water,
see: (a) Z. Jiang, Z. Liang, X. Wu and Y. Lu, Chem. Commun., 2006,
2801–2803; (b) Y. Hayashi, T. Sumiya, J. Takahashi, H. Gotoh,
T. Urushima and M. Shoji, Angew. Chem., Int. Ed., 2006, 45, 958–961;
(c) N. Mase, Y. Nakai, N. Ohara, H. Yoda, K. Takabe, F. Tanaka and
This journal is ß The Royal Society of Chemistry 2006
Chem. Commun., 2006, 3687–3689 | 3689