ARTICLES
7. Cote, A. P., El-Kaderi, H. M., Furukawa, H., Hunt, J. R. & Yaghi, O. M. Reticular
synthesis of microporous and mesoporous 2D covalent organic frameworks.
J. Am. Chem. Soc. 129, 12914–12915 (2007).
27. Ding, S. Y. et al. Construction of covalent organic framework for catalysis:
Pd/COF-LZU1 in Suzuki–Miyaura coupling reaction. J. Am. Chem. Soc. 133,
19816–19822 (2011).
28. Rabbani, M. G. et al. A 2D mesoporous imine-linked covalent organic framework
for high pressure gas storage applications. Chem. Eur. J. 19, 3324–3328 (2013).
29. Xu, H. et al. Catalytic covalent organic frameworks via pore surface engineering.
Chem. Commun. 50, 1292–1294 (2014).
30. MacMillan, D. W. The advent and development of organocatalysis. Nature 455,
304–308 (2008).
8. Wan, S., Guo, J., Kim, J., Ihee, H. & Jiang, D. A belt-shaped, blue luminescent,
and semiconducting covalent organic framework. Angew. Chem. Int. Ed. 47,
8826–8830 (2008).
9. Tilford, R. W., Mugavero, S. J., Pellechia, P. J. & Lavigne, J. J. Tailoring
microporosity in covalent organic frameworks. Adv. Mater. 20,
2741–2746 (2008).
31. List, B. Proline-catalyzed asymmetric reactions. Tetrahedron 58, 5573–5590 (2002).
32. Benaglia, M., Puglisi, A. & Cozzi, F. Polymer-supported organic catalysts. Chem.
Rev. 103, 3401–3429 (2003).
33. Lee, J. et al. Metal–organic framework materials as catalysts. Chem. Soc. Rev.
38, 1450–1459 (2009).
34. Yoon, M., Srirambalaji, R. & Kim, K. Homochiral metal–organic frameworks for
asymmetric heterogeneous catalysis. Chem. Rev. 112, 1196–1231 (2012).
35. Banerjee, M. et al. Postsynthetic modification switches an achiral framework to
catalytically active homochiral metal–organic porous materials. J. Am. Chem.
Soc. 131, 7524–7525 (2009).
36. Dang, D., Wu, P., He, C., Xie, Z. & Duan, C. Homochiral metal–organic frameworks
for heterogeneous asymmetric catalysis. J. Am. Chem. Soc. 132, 14321–14323 (2010).
37. Lun, D. J., Waterhouse, G. I. & Telfer, S. G. A general thermolabile protecting
group strategy for organocatalytic metal–organic frameworks. J. Am. Chem. Soc.
133, 5806–5809 (2011).
38. Notz, W., Tanaka, F. & Barbas, C. F. III. Enamine-based organocatalysis with
proline and diamines: the development of direct catalytic asymmetric
aldol, Mannich, Michael, and Diels–Alder reactions. Acc. Chem. Res. 37,
580–591 (2004).
39. Berner, O. M., Tedeschi, L. & Enders, D. Asymmetric Michael additions to
nitroalkenes. Eur. J. Org. Chem. 2002, 1877–1894 (2002).
40. Bock, D. A., Lehmann, C. W. & List, B. Crystal structures of proline-derived
enamines. Proc. Natl Acad. Sci. USA 107, 20636–20641 (2010).
41. Luo, S., Li, J., Zhang, L., Xu, H. & Cheng, J. P. Noncovalently supported
heterogeneous chiral amine catalysts for asymmetric direct aldol and Michael
addition reactions. Chem. Eur. J. 14, 1273–1281 (2008).
42. Wang, C. A. et al. ‘Bottom-up’ embedding of the Jorgensen–Hayashi catalyst
into a chiral porous polymer for highly efficient heterogeneous asymmetric
organocatalysis. Chem. Eur. J. 18, 6718–6723 (2012).
10. Wan, S., Guo, J., Kim, J., Ihee, H. & Jiang, D. A photoconductive covalent
organic framework: self-condensed arene cubes composed of eclipsed 2D
polypyrene sheets for photocurrent generation. Angew. Chem. Int. Ed.
48, 5439–5442 (2009).
11. Campbell, N. L., Clowes, R., Ritchie, L. K. & Cooper, A. I. Rapid microwave
synthesis and purification of porous covalent organic frameworks. Chem. Mater.
21, 204–206 (2009).
12. Spitler, E. L. & Dichtel, W. R. Lewis acid-catalysed formation of two-dimensional
phthalocyanine covalent organic frameworks. Nature Chem. 2, 672–677 (2010).
13. Wan, S. et al. Covalent organic frameworks with high charge carrier mobility.
Chem. Mater. 23, 4094–4097 (2011).
14. Uribe-Romo, F. J., Doonan, C. J., Furukawa, H., Oisaki, K. & Yaghi, O. M.
Crystalline covalent organic frameworks with hydrazone linkages. J. Am. Chem.
Soc. 133, 11478–11481 (2011).
15. Kandambeth, S. et al. Construction of crystalline 2D covalent organic
frameworks with remarkable chemical (acid/base) stability via a combined
reversible and irreversible route. J. Am. Chem. Soc. 134, 19524–19527 (2012).
16. Dalapati, S. et al. An azine-linked covalent organic framework. J. Am. Chem. Soc.
135, 17310–17313 (2013).
17. Kuhn, P., Antonietti, M. & Thomas, A. Porous, covalent triazine-based
frameworks prepared by ionothermal synthesis. Angew. Chem. Int. Ed. 47,
3450–3453 (2008).
18. Guo, J. et al. Conjugated organic framework with three-dimensionally ordered
stable structure and delocalized π clouds. Nature Commun. 4, 2736 (2013).
19. Lukose, B., Kuc, A. & Heine, T. The structure of layered covalent-organic
frameworks. Chem. Eur. J. 17, 2388–2392 (2011).
20. Nagai, A. et al. Pore surface engineering in covalent organic frameworks. Nature
Commun. 2, 536 (2011).
21. Dogru, M., Sonnauer, A., Gavryushin, A., Knochel, P. & Bein, T. A covalent
organic framework with 4 nm open pores. Chem. Commun. 47,
1707–1709 (2011).
22. Chen, X., Addicoat, M., Irle, S., Nagai, A. & Jiang, D. Control of crystallinity and
porosity of covalent organic frameworks by managing interlayer interactions
based on self-complementary π-electronic force. J. Am. Chem. Soc. 135,
546–549 (2013).
23. Biswal, B. P. et al. Mechanochemical synthesis of chemically stable isoreticular
covalent organic frameworks. J. Am. Chem. Soc. 135, 5328–5331 (2013).
24. Kandambeth, S. et al. Enhancement of chemical stability and crystallinity in
porphyrin-containing covalent organic frameworks by intramolecular hydrogen
bonds. Angew. Chem. Int. Ed. 52, 13052–13056 (2013).
25. Chandra, S. et al. Phosphoric acid loaded azo-based covalent organic framework
for proton conduction. J. Am. Chem. Soc. 136, 6570–6573 (2014).
26. Du, Y. et al. Experimental and computational studies of pyridine-assisted post-
synthesis modified air stable covalent-organic frameworks. Chem. Commun.
48, 4606–4608 (2012).
Acknowledgements
D.J. acknowledges the support of a Grant-in-Aid for Scientific Research (A) (24245030)
from the Ministry of Education, Culture, Sports, Science and Technology of Japan (MEXT).
Author contributions
D.J. conceived the project, designed the experiments and provided funding. H.X. conducted
the experiments and J.G. performed computational calculations. D.J. and H.X. wrote
the manuscript.
Additional information
Supplementary information is available in the online version of the paper. Reprints and
requests for materials should be addressed to D.J.
Competing financial interests
The authors declare no competing financial interests.
8
© 2015 Macmillan Publishers Limited. All rights reserved