Y. Murakami et al. / Tetrahedron: Asymmetry 23 (2012) 1557–1563
1563
4.10. (2S,20S)-Benzyl 4,40-(4-((S)-5-(tert-butoxy)-4-(tert-butoxy-
carbonylamino)-5-oxopent-1-ynyl)pyridine-3,5-diyl)bis(2-(tert-
butoxycarbonylamino)butanoate)) 4 and 3-bromo-(2S,20S)-ben-
zyl 4,40-(4-((S)-5-(tert-butoxy)-4-(tert-butoxycarbonylamino)-5-
oxopent-1-ynyl)pyridine-5-yl)-2-(tert-butoxycarbonylamino)-
butanoate)) 14
yielded a crude product. The product was used for the next reac-
tion without further purification.
A mixture of TFA and distilled water (6.8 mL, TFA/H2O = 95/5)
was added to the crude product (36.9 mg) at room temperature
and stirred for 2 h. The solvent was removed in vacuo. Purification
by C18 silica gel column chromatography (0.1% TFA in distilled
water) yielded desmopyridine 1 as a colorless solid (16.8 mg,
Zinc dust (200 mg, 3.0 mmol) was placed in a nitrogen-purged
37.0 lmol, 66%); Rf 0.30 [MeOH (0.1% TFA)/H2O (0.1% TFA) = 1/9];
1.5 mL Eppendorf microtube. Dry DMF (150
lL) and TMSCl
½
a 2D0
ꢀ
¼ þ10:2 (c 0.1, H2O); 1H NMR (500 MHz, D2O) d 8.49 (2H, s,
(60.0 L, 0.47 mmol) were then added to the microtube, and the
l
H2/6), 4.13 (2H, t, J = 6.3 Hz, H9/18), 4.05 (1H, m, H14), 3.11–2.91
(6H, m, H7/11/16), 2.25, (4H, d, J = 5.1 Hz, H8/17), 2.14 (2H, m,
H13), 1.71–1.64 (2H, m, H12); 13C NMR (125 MHz, D2O) d 172.0
(C10/15/19), 160.6 (C4), 139.4 (C2/3/5/6), 56.1 (C9/14/18), 44.2
(C11), 30.8 (C8/17), 30.6 (C13), 26.1 (C7/16), 25.2 (C12); ESI-HRMS
(m/z) Calcd for C18H29N4O6 [M+H]+ 397.2087. Found 397.2067.
resulting mixture was stirred vigorously for 15 min at room tem-
perature. After stirring, the solution was removed by a microsy-
ringe. The remaining solid was dried using a hot air gun at
reduced pressure. The activated zinc was then cooled to room tem-
perature. A solution of benzyl 2-(S)-((tert-butoxycarbonyl)amino)-
3-iodobutanoate 6 (211 mg, 0.5 mmol, 5.0 equiv) in dry DMF
(150 lL and washed with 100 lL DMF) was then added to the acti-
Acknowledgments
vated zinc. The reaction mixture was stirred at room temperature
for 1 h until completion of the insertion of zinc, as monitored by
TLC analysis (hexane/EtOAc = 3/1). The zinc duct was then allowed
to settle using a centrifuge for 1 min at room temperature. The
organozinc solution was removed from the activated zinc via
We thank Dr. Yong Y. Lin (Columbia University) and Professor
Kyozo Suyama (Tohoku University) for their suggestions, Professor
Masayuki Satake (University of Tokyo) for NMR measurements,
and Dr. Hidehiko Watanabe (Watanabe Chemical Industries, Ltd)
for providing data. This work was supported by a Grant-in-Aid
for Young Scientists (B) from the Ministry of Education, Culture,
Sports, Science and Technology (MEXT) of Japan (KAKENHI Grant
Number 22710224), the SEI Group CSR Foundation, and the Naito
Science Foundation.
microsyringe with 200
lL DMF and added to a 10 mL flask contain-
ing Pd-PEPPSI-IPr (13.6 mg, 0.02
l
mol, 20 mol %) and 13 (49.5 mg,
0.1 mmol, 1.0 equiv). After stirring for 6 h at 40 °C and 18 h at
50 °C, the reaction mixture was diluted with EtOAc and quenched
with saturated NH4Cl solution. The aqueous layer was then ex-
tracted with EtOAc. The combined organic layers were washed
with brine, dried over Na2SO4, and concentrated in vacuo to give
a crude product as a yellow oil. Purification by silica gel column
chromatography (hexane/EtOAc = 3/1 ? 1/1) afforded 4 (47.3 mg,
References
1. Debelle, L.; Tamburro, A. M. Int. J. Biochem. Cell Biol. 1999, 31, 261–272.
2. Rosenbloom, J.; Abrams, W. R.; Mecham, R. FASEB J. 1993, 7, 1208–1218.
3. Davis, N. R.; Anwar, R. A. J. Am. Chem. Soc. 1970, 92, 3778–3782.
4. Akagawa, M.; Suyama, K. Connect. Tissue Res. 2000, 41, 131–141.
5. (a) Hoeve, C. A. J.; Flory, P. J. Biopolymers 1974, 13, 677–686; (b) Urry, D. W. Adv.
Exp. Med. Biol. 1974, 43, 211–243; (c) Weis-Fogh, T.; Andersen, S. O. Nature
1970, 227, 718–721; (d) Urry, D. W. Ultrastruct. Pathol. 1983, 4, 227–251.
6. Bochicchio, B.; Pepe, A. Chirality 2011, 23, 694–702.
7. Umeda, H.; Takeuchi, M.; Suyama, K. J. Biol. Chem. 2001, 276, 12579–12587.
8. (a) Ma, S.; Lieberman, S.; Turino, G. M.; Lin, Y. Y. Proc. Natl. Acad. Sci. U.S.A. 2003,
100, 12941–12943; (b) Ma, S.; Lin, Y. Y.; Turino, G. M. Chest 2007, 131, 1363–
1371; (c) Ma, S.; Turino, G. M.; Lin, Y. Y. J. Chromatogr. B 2011, 879, 1893–1898.
9. (a) Partridge, S. M.; Elsden, D. F.; Thomas, J. Nature 1963, 197, 1297–1298; (b)
Thomas, J.; Elsden, D. F.; Partridge, S. M. Nature 1963, 200, 651–652.
10. (a) Usuki, T.; Yamada, H.; Hayashi, T.; Yanuma, H.; Koseki, Y.; Suzuki, N.;
Masuyama, Y.; Lin, Y. Y. Chem. Commun. 2012, 48, 3233–3235; (b) Yanuma, H.;
Usuki, T. Tetrahedron Lett. 2012, 53, 5920–5922.
11. Koseki, Y.; Yamada, H.; Usuki, T. Tetrahedron: Asymmetry 2011, 22, 580–586.
12. Yu, W.; McConathy, J.; Williams, L.; Camp, V. M.; Malveaux, E. J.; Zhang, Z.;
Olson, J. J.; Goodman, M. M. J. Med. Chem. 2010, 53, 876–886.
13. Gibson, F. S.; Bergmeier, S. C.; Rapoport, H. J. Org. Chem. 1994, 59, 3216–3218.
14. Hilfinger, J.; McKenna, C. E.; Kashemirov, B. A.; Pham, C.; Saejueng, K.; Peterson,
L. US patent. 20090270618.
15. Knochel, P.; Yeh, M. C. P.; Berk, S. C.; Talbert, J. J. Org. Chem. 1988, 53, 2390–
2392.
16. Newhouse, T.; Lewis, C. A.; Baran, P. S. J. Am. Chem. Soc. 2009, 131, 6360–6361.
17. Nishikawa, T.; Ino, A.; Isobe, M. Tetrahedron 1994, 50, 1449–1468.
50.9 lmol, 17%) as a yellow oil and 14 (12.9 mg, 18.0 lmol, 17%)
as a yellow oil, respectively. 4: Rf 0.34 (hexane/EtOAc = 1/1);
½
a 2D0
ꢀ
¼ þ32:1 (c 0.1, CHCl3); IR (neat, cmꢁ1) 3382, 2976, 2230,
1712, 1506, 1362, 1251, 1164, 1056, 906, 851, 756, 699, 592,
467; 1H NMR (300 MHz, CDCl3) d 8.20 (2H, s, H2/6), 7.34 (10H,
m, Bn), 6.01 (1H, s, 14NH), 5.52 (2H, d, J = 7.76 Hz, 9NH/18NH),
5.23–5.13 (4H, m, Bn), 4.46 (3H, m, H9/14/18), 3.10–2.87 (2H, m,
H13), 2.72–2.67 (4H, m, H7/16), 2.13–2.07 and 2.01–1.96 (4H, m,
H8/17), 1.44 (36H, m, tBu); 13C NMR (75 MHz, CDCl3) d 172.3,
169.8, 155.7, 135.4, 128.9, 128.8, 128.7, 83.1, 80.5, 80.3, 67.5,
53.5, 53.0, 33.0, 31.2, 29.5, 28.6, 28.5, 28.2, 14.4; ESI-HRMS (m/z)
Calcd for C51H68N4NaO12 [M+Na]+ 951.4731. Found 951.4737. 14:
Rf 0.58 (hexane/EtOAc = 1/1); ½a D20
¼ þ7:9 (c 0.1, CHCl3); IR (neat,
ꢀ
cmꢁ1) 3384, 2974, 2233, 1714, 1505, 1456, 1362, 1252, 1162,
1057, 851, 755, 698, 589, 468; 1H NMR (300 MHz, CDCl3) d 8.58
(1H, s, H6), 8.25 (1H, s, H2), 7.35 (5H, m, Bn), 5.80 (1H, d,
J = 5.95 Hz, 14NH), 5.52 (1H, d, J = 6.23 Hz, 9NH), 5.23–5.13 (2H,
m, Bn), 4.46 (2H, m, H9/14), 3.15–3.00 (2H, m, H13), 2.77–2.72
(2H, m, H7), 2.17–2.07 and 1.98–1.96 (2H, m, H8), 1.44 (27H, m,
tBu); 13C NMR (75 MHz, CDCl3) d 172.3, 169.6, 135.4, 128.9,
128.8, 128.7, 128.6, 82.9, 80.3, 67.4, 55.9, 53.5, 52.8, 52.7, 32.9,
29.8, 28.5, 28.2, 24.4; ESI-HRMS (m/z) Calcd for C35H46BrN3NaO8
[M+Na]+ 738.2366. Found 738.2355.
18. Kreicberga, J.; Laipniece, L.; Berzinßa, G.; Kampars, V. Chem. Heterocycl. Compd.
¯
2010, 46, 438–444.
19. Mao, G.; Orita, A.; Matsuo, D.; Hirate, T.; Iwanaga, T.; Toyota, S.; Otera, J.
Tetrahedron Lett. 2009, 50, 2860–2864.
20. Spivey, A. C.; Shukla, L.; Hayler, J. F. Org. Lett. 2007, 9, 891–894.
21. Valente, C.; Belowich, M. E.; Hadei, N.; Organ, M. G. Eur. J. Org. Chem. 2010, 23,
4343–4354.
4.11. Desmopyridine 1
22. Usuki, T.; Yanuma, H.; Hayashi, T.; Yamada, H.; Suzuki, N.; Masuyama, Y. J.
23. Currently natural desmopyridine 1 is not available. Therefore, the specific
rotation for natural 1 is unknown.
24. Private communication by Dr. H. Watanabe (Watanabe Chemical Industries,
Ltd, Hiroshima, Japan).
A
solution of 4 (52.1 mg, 56.0 lmol, 1.0 equiv) in MeOH
(2.1 mL) was treated with 10% Pd/C (357.6 mg, 0.34 mmol,
6.0 equiv) and hydrogenated at room temperature. After stirring
for 6 days, the insoluble material was separated by filtration
through a Celite pad on neutral silica gel eluting with MeOH and
the filtrate was concentrated in vacuo. Concentration of the filtrate
25. Winterfield, G. A.; Ito, Y.; Ogawa, T.; Schmidt, R. R. Eur. J. Org. Chem. 1999,
1167–1171.