A. Zampella, M. V. D’Auria / Tetrahedron: Asymmetry 12 (2001) 1543–1545
1545
from 12 by reductive ozonolysis of the terminal double
5. Brown, H. C.; Bhat, K. S.; Randad, R. S. J. Org. Chem.
1989, 54, 1570–1576.
1
bond (Scheme 2). H and 13C NMR spectra of natural
and synthetic 14 were superimposable,11 confirming the
relative stereochemistry. Both natural and synthetic 14
showed a positive value of the optical rotation ([h]D
+3.4; c 1, MeOH, for the ozonolysis derivative 14 from
natural superstolide; [h]D +3.8; c 0.2, MeOH for the
synthetic fragment 14), therefore the absolute
22R,23R,24R,25S,26R configuration was determined
for C(22)ꢀC(26) portion of superstolide A 1.
6. Luly, J. R.; Dellaria, J. F.; Plattner, J. J.; Soderquist, J.
L.; Yi, N. J. Org. Chem. 1987, 52, 1487–1492.
7. Giordano, A.; Spinella, A.; Sodano, G. Tetrahedron:
Asymmetry 1999, 10, 1851–1854.
8. Rychnovsky, S. D.; Skalitsky, D. J. Tetrahedron Lett.
1990, 31, 945–948.
9. Rychnovsky, S. D.; Rogers, B.; Yang, G. J. Org. Chem.
1993, 58, 3511–3515.
1
10. The H and 13C NMR spectra of aldehyde 2 showed two
In conclusion, we have described a novel and efficient
approach to the superstolide fragment 2 (seven steps,
45% overall yield). A triol 14 of defined absolute stereo-
chemistry was also prepared and compared with a
reductive ozonolysis product of superstolide, thus con-
firming the relative and absolute stereochemistry of the
natural product. Further investigations into the total
synthesis of superstolide A are under way in our
laboratory.
sets of signals at room temperature due to the presence of
a conformational equilibrium, as previously noted for
other oxazolidine derivatives.7 NMR data (CDCl3, 500
MHz) and optical rotation (chloroform) for compound 2.
1H NMR l: 9.71 (1H, s, H-21), 4.33 (1H, dd, J=4.3, 10.3
Hz, H-25), 3.99/3.81 (1H, m, H-26), 3.77 (1H, dd, J=4.0,
8.8, H-23), 2.53 (1H, m, H-22), 1.72 (1H, m, H-24),
1.54/1.52, 1.49/1.50 (6H, s’s, acetonide Me), 1.46/1.45
(9H, s, N-Boc), 1.08/1.07 (3H, d, J=6.6 Hz, Me-26),
0.88/0.87 (3H, d, J=6.6 Hz, Me-24), 0.86/0.85 (3H, d,
J=6.6 Hz, Me-22), 0.87 (9H, s, Si-tBu), 0.09/0.08, 0.06/
0.04 (6H, s’s, Si-Me); 13C NMR l: 204.8/204.5 (C-21),
151.8/151.4 (N-Boc), 93.1/92.7 (acetonide), 80.3/79.4 (N-
Boc), 76.9 (C-23), 72.3/71.9 (C-25), 54.9/54.8 (C-26),
52.4/52.1 (C-22), 36.6/36.4 (C-24), 28.6-28.5 (N-Boc),
28.5–27.5, 25.6–24.5 (acetonide Me), 26.1–25.9 (Si-tBu),
18.4 (Si-tBu), 14.0/13.1 (Me-26), 11.4/11.2 (Me-24) 10.3/
10.1 (Me-22), −3.9/−4.0 (Si-Me); [h]D=−4.2 (c=0.5,
CHCl3).
Acknowledgements
This work was supported by grants from MURST
(PRIN ‘99) ‘Chimica dei composti organici di interesse
biologico’ Rome, Italy. The NMR spectra were
recorded at CRIAS Centro Interdipartimentale di Anal-
isi Strumentale, Faculty of Pharmacy, University of
Naples.
11. 1H NMR data (CD3OD, 500 MHz) and optical rotation
1
(methanol) for compound 14. H NMR l: 4.11 (1H, m,
H-26), 3.86 (1H, d, J=9.4 Hz, H-23), 3.77 (1H, dd,
J=10.3, 5.1 Hz, H-21), 3.55 (1H, d, J=6.0 Hz, H-25),
3.53 (1H, dd, overlapped, H-21), 1.96 (3H, NHCOCH3),
1.78 (1H, m, H-22), 1.73 (1H, m, H-24), 1.15 (3H, d,
J=6.6 Hz, Me-26), 0.96 (3H, d, J=6.6 Hz, Me-24), 0.84
(3H, d, J=6.6 Hz, Me-22); 13C NMR l: 169.0
References
1. D’Auria, M. V.; Debitus, C.; Gomez Paloma, L.; Minale,
L.; Zampella, A. J. Am. Chem. Soc. 1994, 116, 6658–
6663.
2. D’Auria, M. V.; Gomez Paloma, L.; Minale, L.; Zam-
pella, A.; Debitus, C. J. Nat. Prod. 1994, 57, 1595–1597.
3. Roush, W. R.; Champoux, J. A.; Peterson, B. C. Tetra-
hedron Lett. 1996, 37, 8989–8992.
(NHC6 OCH3), 74.0 (C-25), 70.9 (C-23), 63.7 (C-21), 44.6
(C-26), 36.7 (C-22), 34.0 (C-24), 19.5 (NHCOCH3), 11.5
(Me-26), 10.2 (Me-22), 6.1 (Me-24). [h]D=+3.4 (c=1,
MeOH).
4. Yu, W.; Zhang, Y.; Jin, Z. Org. Lett. 2001, 3, 1447–1450.
.