O rP gl ea na is ce &d Bo i on mo to al e dc juu l sa tr mC haer mg i ins ts ry
Page 4 of 5
COMMUNICATION
Journal Name
Chen and H. Liu, J. Org. Chem., 2009, 74, 5476-5480. d) M. J.
Conclusions
DOI: 10.1039/D0OB01494J
Alves, N. G. Azoia and A. G. Fortes, Tetrahedron, 2007, 63
,
Iodine, in the presence of oxygen and under visible light
irradiation, efficiently mediates the metal-free tandem
dehydrogenative
reaction between N-aryl glycine esters and styrenes, to afford
differentially substituted dihydroquinoline-3-ones in moderate
to high yields. A substoichiometric quantity of 50 mol-% of I
allows for the consecutive abstraction of five hydrogen atoms,
and thus the reaction can be regarded as catalytic in iodine.
Moreover, the essential Brønsted acid catalyst to mediate the
pivotal imine [4+2]-cycloaddition is readily generated in situ
during the course of the multistep reaction. Future
investigations are necessary to overcome intrinsic limitations of
the present method, such as the lack of reactivity of electron-
deficient N-arylglycine esters like 1g and 1h in the initial
dehydrogenation event.
7
2
27-734. e) D. Osborne and P. J. Stevenson, Tetrahedron Lett.,
002, 43, 5469-5470. f) E. Borrione, M. Prato, G. Scorrano, M.
3
Povarov cyclisation / Csp −H oxygenation
Stivanello and V. Lucchini, J. Heterocyclic Chem., 1988, 25
831-1835.
a) M. Ni, Y. Zhang, T. Gong and B. Feng, Adv. Synth. Catal.,
017, 359, 824-831. b) Z. Xie, J. Jia, X. Liu and L. Liu, Adv. Synth.
,
1
3
4
2
2
Catal., 2016, 358, 919-925. c) H. Richter and O. García
Mancheño, Org. Lett., 2011, 13, 6066-6069.
a) W. Jiang, S. Wan, Y. Su and C. Huo, J. Org. Chem., 2019, 84
,
8
232-8241. b) W. Jiang, Y. Wang, P. Niu, Z. Quan, Y. Su and C.
Huo, Org. Lett., 2018, 20, 4649-4653. c) C. Huo, F. Chen, Y.
Yuan, H. Xie and Y. Wang, Org. Lett., 2015, 17, 5028-5031. d)
C. Huo, H. Xie, F. Chen, J. Tang and Y. Wang, Adv. Synth. Catal.,
2
016, 358, 724-730. e) C. Huo, H. Xie, M. Wu, X. Jia, X. Wang,
F. Chen and J. Tang, Chem. Eur. J., 2015, 21, 5723-5726.
5
a) X. Yang, L. Li, Y. Zhang, J. Org. Chem., 2016, 81, 12433-
1
2442. b) Y. He, B. Yan, H. Tao, Y. Zhang, Y. Li, Org. Biomol.
Experimental
General procedure for the synthesis of compounds 3. In a
Chem., 2018, 16, 3816-3823.
X. Jia, W. Hou, Y. Shao, Y. Yuan, Q. Chen, P. Li, X. Liu and H. Ji,
Chem. Eur. J., 2017, 23, 12980-12984.
a) E. Schendera, L.-N. Unkel, Phung Phan H. Q., G. Salkewitz,
F. Hoffmann, A. Villinger and M. Brasholz, Chem. Eur. J.,
2020, 26, 269-274. b) For a review of I -mediated C−H
6
7
1
0 mL crimp cap vial, N-aryl glycine ester
and styrene derivative (typically 0.10 mmol) were dissolved in
MeCN (3.50 mL per 0.10 mmol of ). I (50 mol-%) was added,
the vial was sealed and fitted with an O -balloon (septum
1 (typically 0.20 mmol)
2
2
2
2
2
pierced by needle). The mixture was irradiated between two
blue CFL lamps (2×18 W, 450±50 nm) with rapid stirring for
functionalisation reactions, see: P. T. Parvatkar, R. Manetsch
and B. K. Banik, Chem. Asian J., 2019, 14, 6-30.
4
8 h. The mixture was poured into NaHCO
followed by extraction with EtOAc (3×). The combined organic
layers were dried with Na SO , filtered and evaporated to
dryness. Column chromatography (silica gel) furnished
product
3
aq. and Na
2
S
2
O
3
aq.
8
9
A. R. Hajipour, M. Arbabian and A. E. Ruoho, J. Org. Chem.,
2002, 67, 8622-8624.
CCDC 2022869 contains the supplementary crystallographic
data for compound 3l. These data are provided free of
charge by The Cambridge Crystallographic Data Centre.
0 W.-T. Wei, F. Teng, Y. Li, R.-J. Song and J.-H. Li, Org. Lett.,
2
4
3
.
1
1
1
2
019, 21, 6285-6288.
1 C. Huo, Y. Yuan, M. Wu, X. Jia, X. Wang, F. Chen and J. Tang,
Angew. Chem. Int. Ed., 2014, 53, 13544-13547.
2 For a recent DFT study of the mechanism of the
dehydrogenative Povarov reaction of glycine derivatives,
see: D.-G. Zhou and P. Wang, New J. Chem., 2020, 44, 2833-
Conflicts of interest
There are no conflicts to declare.
Acknowledgements
2
846.
The authors thank the University of Rostock for financing this
research.
1
3 G. Schmitz, Phys. Chem. Chem. Phys., 2001, 3, 4741-4746.
TOC graphic
Notes and references
1
Selected reviews: a) C.-J. Li, Acc. Chem. Res., 2009, 42, 335-
3
2
44. b) S.-Y. Zhang, F.-M. Zhang and Y-Q. Tu, Chem. Soc. Rev.,
011, 40, 1937-1949. c) C. Zhang, C. Tang and N. Jiao, Chem.
Soc. Rev., 2012, 41, 3464-3484. d) S. A. Girard, T. Knauber and
C.-J. Li, Angew. Chem. Int. Ed., 2014, 53, 74-100. e) A. Batra, P.
Singh and K. N. Singh, Eur. J. Org. Chem., 2016, 4927-4947. f)
D. J. Abrams, P. A. Provencher and E. J. Sorensen, Chem. Soc.
Rev., 2018, 47, 8925-8967.
2
a) G. Bianchini, P. Ribelles, D. Becerra, M. T. Ramos and J. C.
Menéndez, Org. Chem. Front., 2016, 3, 412-422. b) J. McNulty,
R. Vemula, C. Bordón, R. Yolken and L. Jones-Brando, Org.
Biomol. Chem., 2014, 12, 255-260. c) H. Huang, H. Jiang, K.
Visible light and iodine mediate dehydrogenative imine [4+2]-
cycloaddition / C-H oxygenation reactions to furnish highly
functionalised 3-quinolones under metal-free conditions.
4
| J. Name., 2012, 00, 1-3
This journal is © The Royal Society of Chemistry 20xx
Please do not adjust margins