4
Tetrahedron
[5] Krylov, I. B.; Terent’ev, A. O.; Timofeev, V. P.; Shelimov, B. N.;
Novikov, R. A.; Merkulova, V. M.; Nikishin, G. I. Adv. Synth. Catal.
356 (2014) 2266.
[6] Han, B.; Yang, X.; Fang, R.; Yu, W.; Wang, C.; Duan, X.; Liu, S.
Angew. Chem. Int. Ed. 51 (2012) 8816.
[7] Thomas, J. R. J. Am. Chem. Soc. 86 (1964) 1446.
[8] Brokenshire, J. L.; Mendenhall, G. D.; Ingold, K. U. J. Am. Chem. Soc.
93 (1971) 5278.
[9] (a) Dobashi,T. S.; Parker, D. R.; Grubbs, E. J. J. Am. Chem. Soc. 99
(1977) 5382;
(b) Lucarini, M.; Pedulli, G. F.; Alberti, A. J. Org. Chem. 59 (1994)
1980;
(c) Eisenhauer, B. M.; Wang, M.; Labaziewicz, H.; Ngo, M.;
Mendenhall, G. D. J. Org. Chem. 62 (1997) 2050.
[10] (a) Li, W.; Jia, P.; Han, B.; Li, D.; Yu, W. Tetrahedron. 69 (2013) 3274;
(b) Peng, X.; Deng, Y.; Yang, X.; Zhang, L.; Yu, W.; Han, B. Org. Lett.
16 (2014) 4650.
Figure 6 Monitoring of radical A by variable-temperature 1H-NMR
O
OH
N
N
H
+
[11] (a) Peng, X.; Wei, D.; Han, W.; Chen, F.; Yu, W.; Han, B. ACS Catal. 7
(2017) 7830;
1z
A
Radical
O
(b) Krylov, I. B.; Paveliev, S. A.; Shumakova, N. S.; Syroeshkin, M. A.;
Shelimov, B. N.; Nikishin, G. I.; Terent'ev, A.O. RSC Adv. 8 (2018)
5670;
N
CuII
CuIH
O
(c) Li, X.; Lv, L.; Gu, Q.; Liu, X. Tetrahedron. 74 (2018) 6041;
(d) Guo, X.; Gu, D.; Wu, Z.; Zhang, W. Chem. Rev. 115 (2015) 1622.
[12] Han, Z.; Lv, J.; Zhang, J. Tetrahedron. 75 (2019) 2162.
[13] (a) Balsamo, A.; Broccali, G.; Lapucci, A.; Macchia, B.; Macchia, F.;
Orlandini, E.; Rossellol, A. J. Med. Chem. 32 (1989) 1398;
(b) Bhuniya, D.; Mohan, S.; Narayanan, S. Synthesis. 7 (2003) 1018;
(c) Miyabe, H.; Matsumura, A.; Yoshida, K.; Yamauchi, M.; Takemoto,
Y. Synlett. 12 (2004) 2123;
2
O
O
N
N
O
O
H
O
O
N
N
3z
B
(d) Meshram, H. M.; Eeshwaraiah, B.; Sreenivas, M.; Aravind, D.;
Syama Sundar, B.; Yadav, J. S. Synth. Commun. 39 (2009) 1857.
[14] (a) Gannarapu, M. R.; Vasamsetti, S. B.; Punna, N.; Royya, N. K.;
Pamulaparthy, S. R.; Nanubolu, J. B.; Kotamraju, S.; Banda, N. Eur. J.
Med. Chem. 75 (2014) 143;
Scheme 4 Plausible mechanism for the radical addition reaction
Conclusions
In summary, we have developed an efficient Cu(II)-catalyzed
(b) Tu, S.; Xie, Y.; Gui, S.; Ye, L.; Huang, Z.; Huang, Y.; Che, L.
Bioorg. Med. Chem. Lett. 24 (2014) 2173;
(c) Mirjafary, Z.; Abdoli, M.; Saeidian, H.; Kakanejadifard, A.; Farnia,
S. M. F. RSC Adv. 6 (2016) 17740.
radical addition reaction of ketoximes with N-substituted
maleimides. In the presence of Cu(OAc)2·H2O catalyst , the
reaction of readily available ketoximes and N-substituted
maleimides could easily access to a series of O-(N-substituted-
2,5-dicarbonyl pyrrolidine)-oxime ether products in moderate to
good yields. The oxime radical has been confirmed by EPR
spectroscopy. Furthermore, variable-temperature 1H-NMR
indicates the radical addition reaction mechanism. Further
evaluations on other radical reactions using ketoximes as well as
the studies of the insight into the reaction mechanism are ongoing
in our laboratory.
[15] (a) Song, H.; Liu, Y.; Xiong, L.; Li, Y.; Yang, N.; Wang, Q. J. Agric.
Food Chem. 61 (2013) 8730;
(b) Dai, H.; Xiao, Y.; Li, Z.; Xu, X.; Qian, X. Chin. Chem. Lett. 25
(2014) 1014;
(c) Wang, S.;Shi, Y.; He, H.; Li, Y.; Li, Y.; Dai, H. Chin. Chem. Lett.
26 (2015) 672.
[16] Chakravarti, B.; Akhtar, T.; Rai, B.; Yadav, M.; Akhtar Siddiqui, J.;
Dhar Dwivedi, S. K.; Thakur, R.; Singh, A. K.; Singh, A. K.; Kumar, H.
J. Med. Chem. 57 (2014) 8010.
[17] Sun, R.; Lu, M.; Chen, L.; Li, Q.; Song, H.; Bi, F.; Huang, R.; Wang, Q.
J. Agric. Food Chem. 56 (2008) 11376.
Acknowledgments
We gratefully acknowledge the National Nature Science
Foundation of China (No. 21272151) for financial support.
[18] (a) Jang, M. E.; Yasuda, T.; Lee, J.; Lee, S. Y.; Adachi, C. Chem. Lett.
44 (2015) 1248;
(b) Mahmood, Z.; Zhao, J. J. Org. Chem. 81 (2016) 587;
(c) Lim, L. H.;Zhou, J. Org. Chem. Front. 2 (2015) 775;
(d) Manna, S.; Antonchick, A. P. Angew. Chem. 127 (2015) 1.
[19] CCDC 1868576 contains the supplementary crystallographic data for
3a. These data can be obtained free of charge from The Cambridge
See also the Supporting Information.
[20] (a) Thomas, J. R. J. Am. Chem. Soc. 86 (1964) 1446;
(b) Lagercrantz, C. Acta Chem. Scand. B. 42 (1988) 414.
[21] (a) Trost, B. M.; Richardson, J.; Yong, K. J. Am. Chem. Soc. 128 (2006)
2540;
References and notes
[1] (a) Narasaka, K.; Kitamura, M. Eur. J. Org. Chem. (2005) 4505;
(b) Kassa, J.; Kuca, K.; Bartosova, L.; Kunesova, G. Curr. Org. Chem.
11 (2007) 267.
[2] (a) Guan, Z.; Zhang, Z..; Ren, Z.; Wang, Y.; Zhang, X. J. Org. Chem. 76
(2011) 339;
(b) Huang, H.; Ji, X.; Wua, W.; Jiang, H. Chem. Soc. Rev. 44 (2015)
1155.
[3] (a) Blake, J. A.; Pratt,D. A.; Lin, S.; Walton, J. C.; Mulder, P.; Ingold,
K. U. J. Org. Chem. 69 (2004) 3112;
(b) Furuya, Y.; Ishihara, K.; Yamamoto, H. J. Am. Chem. Soc. 2005,
127 (2005) 11240.
(b) Vaillant, F. L.; Garreau, M.; Nicolai, S.; Gryn'ova, G.; Corminboeuf,
C.; Waser, J. Chem. Sci. 9 (2018) 5883.
[4] Peter de Lijser, H.J.; Kim, J. S.; McGrorty, S. M.; Ulloa, E. M. Can. J.
Chem. 81 (2003) 575.