276
D. N. KEVILL, M. W. BOND AND M. J. D’SOUSA
the essentially identical rates in the presence of either
chloride or trifluoromethanesulfonate as counterion and
indicative of only a modest salt effect, addition to the
solvolysis in 50% TFE of a concentration of tetraethy-
lammonium chloride equal to that of the substrate led to
only a 27% increase in rate.
aqueous solution of perchloric acid was appropriately
diluted for its addition to runs in aqueous alcohol
solvents.
Acknowledgment
A correlation, using Eqn (2), of the specific rates of
solvolysis in water and in the nine aqueous ethanol and
aqueous methanol solvents containing 20% or more
water, for the runs in the presence of HClO4 (Table 1),
leads to values for l of 0.22 Æ 0.04, for the residual
(constant) term c of 0.03 Æ 0.05 and for the correlation
coefficient of 0.887. The low value for the correlation
coefficient is in part due to the limited range of NT values
(1.38 units) for these solvents. The l value is essentially
identical with that observed for solvolyses of 1,
suggesting a similarity in the mechanism. The specific
rate values which can then be estimated [using Eqn (2)]
for ethanol and methanol are 11 and 4.5 times those
actually observed (Table 1) and it is possible that the
lower experimental values could be associated with the
need to proceed to the solvent-separated ion– molecule
pair, so as to prevent internal return. In this regard, water
would be more efficient than a bulkier and less
electrophilic alcohol.22 The need to consider the separa-
tion is supported by the conclusion23 that, in the
borderline solvolyses of sec-alkylpyridinium ions, a
rate-determining SN1 cleavage in TFE changes to a
rate-determining ion– molecule pair dissociation in
1,1,1,3,3,3-hexafluoropropan-2-ol.
D.N.K. thanks Professor H. Mayr (Universita¨t Mu¨nchen)
for hospitality during the preparation of this paper.
REFERENCES
1. M. J. D’Souza, D. N. Kevill, T. W. Bentley and A. C. Devaney. J.
Org. Chem. 60, 1632 (1995).
2. D. N. Kevill, A. J. Oldfield and M. J. D’Souza. J. Chem. Res. (S),
122 (1996).
3. D. N. Kevill, A. J. Casamassa and M. J. D’Souza. J. Chem. Res. (S)
472 (1996).
4. D. N. Kevill. in Advances in Quantitative Structure–Property
Relationships, edited by M. Charton, vol. 1, pp. 81– 115. Jai Press,
Greenwich, CT (1996).
5. T. W. Bentley and G. Llewellyn. Prog. Phys. Org. Chem., 17, 121
(1990).
6. H. K. Hall Jr and C. H. Lueck. J. Org. Chem. 28, 2818 (1963); H.
K. Hall Jr. J. Am. Chem. Soc. 77, 5993 (1955).
7. A. Queen, T. A. Nour, M. N. Paddon-Row and K. Preston. Can. J.
Chem. 48, 522 (1970); A. Queen. Can. J. Chem. 45, 1619 (1967).
8. S. L. Johnson and H. M. Giron. J. Org. Chem. 37, 1383 (1972); S.
L. Johnson. Adv. Phys. Org. Chem. 5, 237 (1967).
9. R. Bacaloglu, C. Daˇescu and G. Ostrogovich. J. Chem. Soc., Perkin
Trans. 2 1011 (1972).
10. S. C. Kim, H.-B. Song and I. Lee. J. Korean Chem. Soc. 23, 368
(1979); Chem. Abstr., 93, 45495b (1980).
11. A. R. Katritzky and B. Brycki. Chem. Soc. Rev. 19, 803 (1990)
12. D. N. Kevill and S. W. Anderson. J. Am. Chem. Soc. 108, 1579
(1986).
13. D. N. Kevill, N. HJ Ismail and M. J. D’Souza. J. Org. Chem. 59,
6303 (1994).
EXPERIMENTAL
14. D. N. Kevill and G. M. L. Lin. J. Am. Chem. Soc. 101, 3916 (1979);
D. N. Kevill, S. W. Anderson and E. K. Fujimoto. in
Nucleophilicity, edited by J. M. Harris and S. P. McManus, pp.
269–283. American Chemical Society, Washington, DC (1987).
15. J. Herzog. Chem. Ber. 40, 1831 (1907); S. L. Johnson and K. A.
Rumon. J. Phys. Chem. 68, 3149 (1964).
16. S. L. Johnson and K. A. Rumon. J. Am. Chem. Soc. 87, 4782
(1967).
17. N. Buckley and N. J. Oppenheimer. J. Org. Chem. 61, 7360 (1996).
18. A. R. Katritzky and B. Brycki. J. Am. Chem. Soc. 108, 7295
(1986).
19. P. J. Battye, E. M. Ihsan and R. B. Moodie. J. Chem. Soc., Perkin
Trans. 2 741 (1980).
20. E. A. Castro and C. Ureta. J. Chem. Res. (S) 358 (1987).
21. D. N. Kevill, S. W. Anderson and N. H. J. Ismail. J. Org. Chem. 61,
7256 (1996).
22. T. Ando and S. Tsukamoto. Tetrahedron Lett. 2775 (1977).
23. A. R. Katritzky, M. L. Lopez-Rodriguez and J. Marquet. J. Chem.
Soc., Perkin Trans. 2 349 (1984).
N,N-Diphenylcarbamoylpyridinium chloride was pre-
pared from pyridine and N,N-Diphenylcarbamoyl chlor-
ide (Aldrich, 98%) as described previously15; m.p. 108–
109°C (lit.8a m.p. 107.5–108.5°C). The trifluorometha-
nesulfonate salt of 4 was prepared as an oil by treatment
of a solution of the chloride salt in acetonitrile with an
equivalent amount of silver trifluoromethanesulfonate,
followed by filtration and removal of the solvent under
reduced pressure. The purification of the solvents and the
kinetic methods were as described previously.1 When
required, initial values for the specific rates were obtained
from approximately linear plots of integrated values
against extent of reaction. A standardized concentrated
1998 John Wiley & Sons, Ltd.
JOURNAL OF PHYSICAL ORGANIC CHEMISTRY, VOL. 11, 273–276 (1998)