Journal of the American Chemical Society
Communication
octene; however, moderate selectivity was obtained for styrene,
for which ligand 2 showed no enantioselectivity whatsoever.
Under hydroformylation conditions, an excess of ligand is
required to suppress the formation of ligand-free rhodium, an
active and nonselective catalyst that compromises the
(7) Bronger, R. P. J; Kamer, P. C. J.; van Leeuwen, P. W. N. M.
Organometallics 2003, 22, 5358−5369.
(8) Yu, S.; Chie, Y.-M.; Guan, Z.-h.; Zhang, X. Org. Lett. 2008, 10,
3
(
469−3472.
9) Seayad, A.; Ahmed, M.; Klein, H.; Jackstell, R.; Gross, T.; Beller,
M. Science 2002, 297, 1676−1678.
10) For enantioselective hydroformylation of 2-butene, see: Sakai,
N.; Nozaki, K.; Takaya, H. J. Chem. Soc., Chem. Commun. 1994, 395−
96.
11) Nozaki, K.; Matsuo, T.; Shibahara, F.; Hiyama, T. Adv. Synth.
3
selectivity. In line with this, we observed that a 1:Rh ratio of
(
5
:1 was necessary for optimal selectivity (see SI, Chart S1 for
ligand ratio optimization). This excess ligand is not required to
retain a stable box structure, and according to the large
association constant involved in the formation of 1, the excess
ligand is present in solution as the metal-free box structure 1.
To confirm the stability of ligand 1, we investigated its
performance at elevated temperature. We performed the
catalysis at 70 °C and determined selectivities after 1 h, as
isomerization at higher conversions returned convoluted results
3
(
Catal. 2001, 343, 61−63.
(12) For regioselective hydroformylation of functionalized internal
̌
alkenes, see: (a) Smejkal, T.; Breit, B. Angew. Chem., Int. Ed. 2008, 47
(
218), 311−315. (b) Dydio, P.; Dzik, W. I..; Lutz, M.; de Bruin, B.;
Reek, J. N. H. Angew. Chem., Int. Ed. 2011, 50, 396−400.
̌
(
13) Smejkal, T.; Gribkov, D.; Geier, J.; Keller, M.; Breit, B. Chem.
Eur. J. 2010, 16, 2470−2478.
(
see SI, Table S2). Interestingly, despite a loss of the preference
(14) For enantioselective hydroformylation of functionalized internal
for product b due to substrate isomerization, the catalyst still
alkenes, see: Chikkali, S. H.; Bellini, R.; Berthon-Gelloz, G.; van der
Vlugt, J. I.; de Bruin, B.; Reek, J. N. H. Chem. Commun. 2010, 46,
displayed high enantiomeric ratios for the innermost aldehyde:
8
2:18 for trans and 88:12 for cis. Under the same conditions,
1
(
244−1246.
15) Grunanger, C. U.; Breit, B. Angew. Chem., Int. Ed. 2010, 49,
967−970.
(16) Gual, A.; Godard, C.; Castillon
2010, 352, 463−477.
17) McDonald, R. I.; Wong, G. W.; Neupane, R. P.; Stahl, S. S.;
ligand 2 gave essentially racemic mixtures. These results
indicate that our design strategy was sound, i.e., that the
multivalent binding of 1 results in a ligand robust enough to
remain intact at elevated temperatures.
̈
́
, S.; Claver, C. Adv. Synth. Catal.
(
In conclusion, we have demonstrated that the confinement
effects in the hydroformylation of unfunctionalized internal
Landis, C. R. J. Am. Chem. Soc. 2010, 132, 14027−14029.
(18) Worthy, A. D.; Joe, C. L.; Lightburn, T. E.; Tan, K. L. J. Am.
Chem. Soc. 2010, 132, 14757−14759.
3
0
alkenes can be extended to the asymmetric reaction. The
supramolecularly generated chiral ligand has afforded extra-
ordinary enantioselectivities for these difficult substrates,
especially for the cis-2-olefins. Additionally, the design strategy
calling for multiple points of attachment for each of the
structural components has resulted in a robust architecture,
allowing for continued selectivity at elevated temperatures.
(19) Ringe, D.; Petsko, G. A. Science 2008, 320, 1428−1429.
(20) Wiester, M. J.; Ulmann, P. A.; Mirkin, C. A. Angew. Chem., Int.
Ed. 2010, 50, 114−137.
(21) Koblenz, T. S.; Wassenaar, J.; Reek, J. N. H. Chem. Soc. Rev.
2
008, 37, 247−262.
(22) Merlau, M. L.; del Pilar Mejia, M.; Nguyen, S. T.; Hupp, J. T.
Angew. Chem., Int. Ed. 2001, 40, 4239−4242.
ASSOCIATED CONTENT
(23) Lee, S. J.; Cho, S.-H.; Mulfort, K. L.; Tiede, D. M.; Hupp, J. T.;
Nguyen, S. T. J. Am. Chem. Soc. 2008, 130, 16828−16829.
■
*
S
Supporting Information
(24) Leung, D. H.; Fiedler, D.; Bergman, R. G.; Raymond, K. N.
Synthetic protocols and characterization data for 1 and 1-Rh;
experimental procedures and results for all catalysis runs. This
Angew. Chem. 2004, 116, 981−984.
(25) Fiedler, D.; Leung, D. H.; Bergman, R. G.; Raymond, K. N. Acc.
Chem. Res. 2005, 38, 349−358.
(26) Slagt, V. F.; Reek, J. N. H.; Kamer, P. C. J.; van Leeuwen, P. W.
N. M. Angew. Chem., Int. Ed. 2001, 40, 4271−4274.
(
27) Lee, S. J.; Hu, A.; Lin, W. J. Am. Chem. Soc. 2002, 124, 12948−
AUTHOR INFORMATION
1
2949.
28) Gianneschi, N. C.; Cho, S.-H.; Nguyen, S. T.; Mirkin, C. A.
Angew. Chem., Int. Ed. 2004, 43, 5503−5507.
29) Cavarzan, A.; Scarso, A.; Sgarbossa, P.; Strukul, G.; Reek, J. N.
H. J. Am. Chem. Soc. 2010, 133, 2848−2851.
30) Kuil, M.; Soltner, T.; van Leeuwen, P. W. N. M.; Reek, J. N. H. J.
(
(
Notes
The authors declare no competing financial interest.
(
Am. Chem. Soc. 2006, 128, 11344−11345.
ACKNOWLEDGMENTS
(
(
31) Breit, B. Angew. Chem., Int. Ed. 2005, 44, 6816−6825.
■
32) Carboni, S.; Gennari, C.; Pignataro, L.; Piarulli, U. Dalton Trans.
Financial support for this work was provided by the
Schlumberger Foundation’s Faculty for the Future (fellowship
for T.G.), the NRSCC, and the University of Amsterdam.
2
(
(
011, 40, 4355−4373.
33) Meeuwissen, J.; Reek, J. N. H. Nat. Chem. 2010, 2, 615−621.
34) Moteki, S. A.; Takacs, J. M. Angew. Chem., Int. Ed. 2008, 47,
8
94−897.
REFERENCES
■
(35) Kuil, M.; Goudriaan, P. E.; Kleij, A. W.; Tooke, D. M.; Spek, A.
(
(
(
1) Schurig, V.; Betschinger, F. Chem. Rev. 1992, 92, 873−888.
L.; van Leeuwen, P. W. N. M.; Reek, J. N. H. Dalton Trans. 2007,
2311−2320.
2) Wills, M. Science 2006, 311, 619−620.
3) van Leeuwen, P. W. N. M.; Claver, C. Rhodium Catalyzed
(36) Bellini, R.; Chikkali, S. H.; Berthon-Gelloz, G.; Reek, J. N. H.
Angew. Chem., Int. Ed. 2011, 50, 7342−7345.
Hydroformylation; Kluwer Academic Publishers: Dordrecht, 2000.
4) van Leeuwen, P. W. N. M.; Roobeek, C. F. J. Organomet. Chem.
983, 258, 343−350.
5) van der Veen, L. A.; Kamer, P. C. J.; van Leeuwen, P. W. N. M.
Angew. Chem., Int. Ed. 1999, 38, 336−338.
6) Klein, H.; Jackstell, R.; Wiese, K.-D.; Borgmann, C.; Beller, M.
Angew. Chem., Int. Ed. 2001, 40, 3408−3411.
(
1
(
(37) Kleij, A. W.; Kuil, M.; Tooke, D. M.; Lutz, M.; Spek, A. L.; Reek,
J. N. H. Chem.Eur. J. 2005, 11, 4743−4750.
(38) Kuil, M.; Puijk, I. M.; Kleij, A. W.; Tooke, D. M.; Spek, A. L.;
Reek, J. N. H. Chem. Asian J. 2009, 4, 50−57.
(
(39) The titration curve shape suggests that the dissociation constant
(reciprocal binding constant) is orders of magnitude greater than the
2
862
dx.doi.org/10.1021/ja211455j | J. Am. Chem. Soc. 2012, 134, 2860−2863