Heck Reaction Promoted by a CN−Palladacycle
A R T I C L E S
chlorides,14 not being easily recyclable, and requiring high
reaction temperatures,15 thus limiting the scope of substrates
that can be used, i.e., those that are thermally stable. It is evident
that a detailed, intimate knowledge of the steps and the reaction
mechanism involved could provide new and/or more improved
procedures for these C-C coupling reactions.
Scheme 1. Chloropalladation of
N,N-Dimethyl-1-phenylpropargylamine
It is now accepted that in most of the cases, the catalytically
active species involved in these reactions are based on Pd(0)
and that the reaction proceeds through a Pd(0)/Pd(II) catalytic
cycle,16 whatever the nature of the catalyst precursor (ionic,
molecular, colloidal, supported or “heterogeneous”).17 Although
in some cases it was proposed that the Heck reaction can occur
at the metal surfaces of the colloidal or heterogeneous palladium-
based catalyst precursors,9 most experimental evidence points
to them serving as a reservoir of soluble catalytically active
species.8 Supported Pd(II) catalysts have apparently similar roles
in these coupling reactions, i.e., they are actually reservoirs of
soluble ill-defined forms of catalytically active Pd(0) species.7
There are various indications that in the arylation of alkenes
promoted by palladacycles, they act as a reservoir of catalytically
active Pd(0) species (closely akin to “ligandless” precursors5),
but there is also the involvement of colloidal palladium.11d In
this context, the question as to whether the reaction is promoted
by the nanoparticles themselves or that they serve as a reservoir
of soluble catalytically active Pd species still remains open.
However, it is not a simple task to distinguish between so-called
“homogeneous” and “heterogeneous” catalysts,18 in particular
in the reactions promoted by transition-metal compounds.
Notwithstanding, there are now several approaches, such as
poisoning experiments; intrinsic kinetics, related to the formation
of the nanoparticles and with the catalytic reaction itself; and
physical-chemical analysis (transmission electron microscopy,
for instance) that can be used as probes to determine the nature
of the “true” catalyst. Although some of these approaches have
been used to probe the species involved in the Heck reaction
promoted by palladacycles, only limited conclusions have
appeared so far, most of them indicating that they are precata-
lysts of ill-defined Pd(0) catalytically active species.5c,15b,17d,19
We have recently reported that the palladacycle 1 derived from
the chloropalladation of N,N-dimethyl-1-phenylpropragylamine
(Scheme 1) is an outstanding catalyst precursor for the coupling
of aryl iodides and bromides, and these reactions can be
conducted at room temperature.15b In this particular case, Hg
poisoning experiments indicated the involvement of low-ligated
Pd(0) as the catalytically active species. We have now employed
several of the most used physical-chemical probes to determine
not only the nature of the species involved in the Heck reaction
promoted by palladacycle 1 but also the kinetics and mechanism
of this process.
(8) (a) Djakovitch, L.; Kohler, K. J. Organomet. Chem. 2000, 606, 101-107.
(b) Zhao, F. Y.; Bhanage, B. M.; Shirai, M.; Arai, M. Chem. Eur. J. 2000,
6, 843-848. (c) Biffis, A.; Zecca, M.; Basato, M. J. Mol. Catal. A-Chem.
2001, 173, 249-274. (d) Biffis, A.; Zecca, M.; Basato, M. Eur. J. Inorg.
Chem. 2001, 1131-1133. (e) Kohler, K.; Wagner, M.; Djakovitch, L. Catal.
Today 2001, 66, 105-114. (f) Zhao, F. Y.; Murakami, K.; Shirai, M.; Arai,
M. J. Catal. 2000, 194, 479-483. (g) Kohler, K.; Heidenreich, R. G.;
Krauter, J. G. E.; Pietsch, M. Chem.Eur. J. 2002, 8, 622-631. (h)
Heidenreich, R. G.; Krauter, E. G. E.; Pietsch, J.; Kohler, K. J. Mol. Catal.
A-Chem. 2002, 182, 499-509. (i) Prockl, S. S.; Kleist, W.; Gruber, M. A.;
Kohler, K. Angew. Chem., Int. Ed. 2004, 43, 1881-1882.
(9) (a) Choudary, B. M.; Madhi, S.; Chowdari, N. S.; Kantam, M. L.; Sreedhar,
B. J. Am. Chem. Soc. 2002, 124, 14127-14136. (b) Dams, M.; Drijkonin-
gen, L.; Pauwels, B.; Van Tendeloo, G.; De Vos, D. E.; Jacobs, P. A. J.
Catal. 2002, 209, 225-236. (c) Corma, A.; Garcia, H.; Leyva, A.; Primo,
A. Appl. Catal. A-Gen. 2004, 257, 77-83. (d) Choudary, B. M.; Madhi,
S.; Kantam, M. L.; Sreedhar, B.; Iwasawa, I. J. Am. Chem. Soc. 2004,
126, 2292-2293.
(10) See for example: (a) Beller, M.; Fischer, H.; Herrmann, W. A.; Ofele, K.;
Brossmer, C. Angew. Chem., Int. Ed. Engl. 1995, 34, 1848-1849. (b) Ohff,
M.; Ohff, A.; vanderBoom, M. E.; Milstein, D. J. Am. Chem. Soc. 1997,
119, 11687-11688. (c) Albisson, D. A.; Bedford, R. B.; Scully, P. N.
Tetrahedron Lett. 1998, 39, 9793-9796. (d) Shaw, B. L.; Perera, S. D.;
Staley, E. A. Chem. Commun. 1998, 1361-1362. (e) Ohff, M.; Ohff, A.;
Milstein, D. Chem. Commun. 1999, 357-358. (f) Bergbreiter, D. E.;
Osburn, P. L.; Liu, Y. S. J. Am. Chem. Soc. 1999, 121, 9531-9538. (g)
Gruber, A. S.; Zim, D.; Ebeling, G.; Monteiro, A. L.; Dupont, J. Org. Lett.
2000, 2, 1287-1290. (h). (g) Alonso, D. A.; Najera, C.; Pacheco, M. C.
Org. Lett. 2000, 2, 1823-1826. (i) Rocaboy, C.; Gladysz, J. A. Org. Lett.
2002, 4, 1993-1996. (j) Yao, Q. W.; Kinney, E. P.; Zheng, C. Org. Lett.
2004, 6, 2997-2999.
(11) (a) Herrmann, W. A.; Bohm, V. P. W.; Reisinger, C. P. J. Organomet.
Chem. 1999, 576, 23-41. (b) Dupont, J.; Pfeffer, M.; Spencer, J. Eur. J.
Inorg. Chem. 2001, 1917-1927. (c) Bedford, R. B. Chem. Commun. 2003,
1787-1796. (d) Beletskaya, I. P.; Cheprakov, A. V. J. Organomet. Chem.
2004, 689, 4055-4082. (e) Dupont, J.; Consorti, C. S.; Spencer, J. Chem.
ReV. 2005, 105, 2427-2571.
(12) (a) Jeffery, T.; Galland, J. C. Tetrahedron Lett. 1994, 35, 4103-4106. (b)
Jeffery, T. Tetrahedron, 1996, 52, 10113-10130.
(13) Farina, V. AdV. Synth. Catal. 2004, 346, 1553-1582.
(14) Littke, A. F.; Fu, G. C. Angew. Chem., Int. Ed. 2002, 41, 4176-4211.
(15) Only two examples of Heck coupling at room temperature have been
reported so far: (a) Littke, A. F.; Fu, G. C. J. Am. Chem. Soc. 2001, 123,
6989-7000. (b) Consorti, C. S.; Zanini, M. L.; Leal, S.; Ebeling, G.;
Dupont, J. Org. Lett. 2003, 5, 983-986.
Experimental Section
General Methods. All catalytic reactions were carried out under
an argon or nitrogen atmosphere in an oven-dried resealable Schlenk
tube. All substrates were purchased from Acros and used without further
purification. N,N-dimethylacetamide was degassed and stored over
molecular sieves. Molten NBu4Br was exposed to vacuum for 1 h prior
to use. NMR spectra were recorded on a Varian Inova 300 MHz
spectrometer. In situ time-resolved IR analysis were performed in a
Bomem B-102 spectrometer adapted with an ATR probe Axiom Dipper
210 equipped with a ZnSe reflectance element. In situ time-resolved
UV analyses were performed in a Varian Cary 50 spectrophotometer.
Gas chromatography analyses were performed on a Hewlett-Packard-
5890 gas chromatograph with a FID detector and 30 m DB17 capillary
column. TEM and EDS analysis were performed in a JEOL-JEM 2010
electronic microscope (200 kV). The CN (1),20 CP (2),21 CS (3),22 and
(16) See, for example: (a) Amatore, C.; Jutand, A. J. Organomet. Chem. 1999,
576, 254-278. (b) Amatore, C.; Jutand, A. Acc. Chem. Res. 2000, 33, 314-
321. (c) Cruz, S. C.; Aarnoutse, P. J.; Rothenberg, G.; Westerhuis, J. A.;
Smilde, A. K.; Bliek, A. Phys. Chem. Chem. Phys. 2003, 5, 4455-4460.
(d) Buback, M.; Perkovic, T.; Redlich, S.; de Meijere, A. Eur. J. Org.
Chem. 2003, 2375-2382 and references therein.
(17) (a) Reetz, M. T.; Westermann, E.; Lohmer, R.; Lohmer, G. Tetrahedron
Lett. 1998, 39, 8449-8452. (b) Reetz, M. T.; Westermann, E. Angew.
Chem., Int. Ed. 2000, 39, 165-168. (c) de Vries, A. H. M.; Parlevliet, F.
J.; Schmieder-van de Vondervoort, L.; Mommers, J. H. M.; Henderickx,
H. J. W.; Walet, M. A. M.; de Vries, J. G. AdV. Synth. Catal. 2002, 344,
996-1002. (d) Rocaboy, C.; Gladysz, J. A. New J. Chem. 2003, 27, 39-
49. (e) Tromp, M.; Sietsma, J. R. A.; van Bokhoven, J. A.; van Strijdonck,
G. P. F.; van Haaren, R. J.; van der Eerden, A. M. J.; van Leeuwen, P. W.
N. M.; Koningsberger, D. C. Chem. Commun. 2003, 128-129. (f) Cassol,
C. C.; Umpierre, A. P.; Machado, G.; Wolke, S. I.; Dupont, J. J. Am. Chem.
Soc. 2005, 127, 3298-3299.
(18) (a) Lin, Y.; Finke, R. G. Inorg. Chem. 1994, 33, 4891-4910. (b) Widegren,
J. A.; Finke, R. G. J. Mol. Catal. A-Chem. 2003, 198, 317-341.
(19) (a) Nowotny, M.; Hanefeld, U.; van Koningsveld, H.; Maschmeyer, T.
Chem. Commun. 2000, 1877-1878. (b) Beletskaya, I. P.; Kashin, A. N.;
Karlstedt, N. B.; Mitin, A. V.; Cheprakov, A. V.; Kazankov, G. M. J.
Organomet. Chem. 2001, 622, 89-96. (c) Bedford, R. B.; Cazin, C. S. J.;
Hursthouse, M. B.; Light, M. E.; Pike, K. J. Wimperis, S. J. Organomet.
Chem. 2001, 633, 173-181. (d) Eberhard, M. R. Org. Lett. 2004, 6, 2125-
2128. (e) Consorti, C. S.; Ebeling, G.; Flores, F. R.; Rominger, F.; Dupont,
J. AdV. Synth. Catal. 2004, 346, 617-624.
(20) Dupont, J.; Basso, N. R.; Meneghetti, M. R.; Konrath, R. A.; Burrow, R.;
Horner, M. Organometallics 1997, 16, 2386-2391.
9
J. AM. CHEM. SOC. VOL. 127, NO. 34, 2005 12055