Organic Letters
Letter
2013, 15, 5866. (e) Thireau, J.; Marteaux, J.; Delagrange, P.;
Lefoulon, F.; Dufourny, L.; Guillaumet, G.; Suzenet, F. ACS Med.
Chem. Lett. 2014, 5, 158. (f) Jin, J.; Qiu, F. G. Adv. Synth. Catal. 2014,
356, 340. (g) Jida, M.; Van der Poorten, O.; Guillemyn, K.;
Urbanczyk-Lipkowska, Z.; Tourwe, D.; Ballet, S. Org. Lett. 2015, 17,
4482.
(8) (a) Gatta, F.; Misiti, D. J. Heterocycl. Chem. 1987, 24, 1183.
(b) Pulka, K.; Feytens, D.; Van den Eynde, I.; De Wachter, R.;
Kosson, P.; Misicka, A.; Lipkowski, A.; Chung, N. N.; Schiller, P. W.;
Tourwe, D. Tetrahedron 2007, 63, 1459. (c) Chiotellis, A.; Muller
Herde, A.; Rossler, S. L.; Brekalo, A.; Gedeonova, E.; Mu, L.; Keller,
C.; Schibli, R.; Kramer, S. D.; Ametamey, S. M. J. Med. Chem. 2016,
59, 5324.
(9) (a) Ye, J.; Wu, J.; Lv, T.; Wu, G.; Gao, Y.; Chen, H. Angew.
Chem., Int. Ed. 2017, 56, 14968. (b) Ye, J.; Lin, Y.; Liu, Q.; Xu, D.;
Wu, F.; Liu, B.; Gao, Y.; Chen, H. Org. Lett. 2018, 20, 5457. (c) Lin,
Y.; Ye, J.; Zhang, W.; Gao, Y.; Chen, H. Adv. Synth. Catal. 2019, 361,
432. (d) Xu, D.; Ye, F.; Ye, J.; Gao, Y.; Chen, H. Org. Lett. 2019, 21,
6160.
(10) (a) Matzek, L. W.; Carter, K. E. Chemosphere 2016, 151, 178.
(b) Waclawek, S.; Lutze, H. V.; Grubel, K.; Padil, V. V. T.; Cernik,
M.; Dionysiou, D. D. Chem. Eng. J. 2017, 330, 44. (c) Mandal, S.;
Bera, T.; Dubey, G.; Saha, J.; Laha, J. K. ACS Catal. 2018, 8, 5085.
(11) Sutherland, D. R.; Veguillas, M.; Oates, C. L.; Lee, A. L. Org.
Lett. 2018, 20, 6863.
proposed mechanism for this mild oxidation is shown in Figure
4B.14 Decomposition of S2O8 leads to the formation of
2−
−•
sulfate radical anion SO4 under thermolysis in the DMSO
solvent.11 The carbon-centered radical A is generated from
THβC 1 by single electron transfer (SET) to SO4−•, followed
by further oxidation to afford B.15 Intermolecular nucleophilic
addition to B finally delivers N-Boc-2-formyl-Trp-OH 2.
In summary, a novel persulfate-mediated oxidation of
THβCs has been developed for the synthesis of a broad
range of 2-formyl N-substituted tryptamines and the related
derivatives under mild conditions. It was found that both the
oxidant and the cosolvents (DMSO/H2O) were critical factors
for this oxidation. The synthetic utility of this approach was
further demonstrated by last-stage oxidation of the marketed
small-molecule drug Cialis and the natural product evodi-
amine.
ASSOCIATED CONTENT
* Supporting Information
■
S
The Supporting Information is available free of charge on the
(12) (a) Miyazawa, M.; Fujioka, J.; Ishikawa, Y. J. Sci. Food Agric.
2002, 82, 1574. (b) Kato, A.; Yasuko, H.; Goto, H.; Hollinshead, J.;
Nash, R. J.; Adachi, I. Phytomedicine 2009, 16, 258. (c) Wehle, S.;
Espargaro, A.; Sabate, R.; Decker, M. Tetrahedron 2016, 72, 2535.
(13) Wang, Q.; Feng, X.; Wang, M.; Chen, Y.; Guan, F.; Shan, Y.;
Yin, M.; Zhao, X.; Sun, H.; Zhao, Y. CN 102093357 A, 2011.
(14) (a) Laha, J. K.; Satyanarayana Tummalapalli, K. S.; Jethava, K.
P. Org. Biomol. Chem. 2016, 14, 2473. (b) Xie, L.; Lu, C.; Jing, D.; Ou,
X.; Zheng, K. Eur. J. Org. Chem. 2019, 2019, 3649.
Optimization studies, mechanistic studies, synthesis
procedures, and NMR spectra (PDF)
AUTHOR INFORMATION
■
Corresponding Author
ORCID
(15) (a) Li, C. Acc. Chem. Res. 2009, 42, 335. (b) Liu, X.; Meng, Z.;
Li, C.; Lou, H.; Liu, L. Angew. Chem., Int. Ed. 2015, 54, 6012.
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
This research was supported by the Natural Science
Foundation of Fujian Province (2019J01202).
■
REFERENCES
■
(1) Newhouse, T.; Baran, P. S. Angew. Chem., Int. Ed. 2011, 50,
3362.
(2) (a) Noyori, R.; Aoki, M.; Sato, K. Chem. Commun. 2003, 1977.
(b) Que, L., Jr.; Tolman, W. B. Nature 2008, 455, 333. (c) Piera, J.;
Backvall, J. E. Angew. Chem., Int. Ed. 2008, 47, 3506. (d) Campbell, A.
N.; Stahl, S. S. Acc. Chem. Res. 2012, 45, 851. (e) Wang, D.;
Weinstein, A. B.; White, P. B.; Stahl, S. S. Chem. Rev. 2018, 118, 2636.
(3) Freudendahl, D. M.; Santoro, S.; Shahzad, S. A.; Santi, C.; Wirth,
T. Angew. Chem., Int. Ed. 2009, 48, 8409.
(4) Maity, A. C. Synlett 2008, 2008, 465.
(5) (a) Nogueira, C. W.; Zeni, G.; Rocha, J. B. Chem. Rev. 2004, 104,
6255. (b) Mlochowski, J.; Wojtowicz-Mlochowska, H. Molecules
2015, 20, 10205.
(6) (a) Singleton, D. A.; Hang, C. J. Org. Chem. 2000, 65, 7554.
(b) Ghosh, P.; Das, J.; Sarkar, A.; Ng, S. W.; Tiekink, E. R. T.
Tetrahedron 2012, 68, 6485.
(7) (a) Jones, S. B.; Simmons, B.; MacMillan, D. W. J. Am. Chem.
Soc. 2009, 131, 13606. (b) Jones, S. B.; Simmons, B.; Mastracchio, A.;
MacMillan, D. W. Nature 2011, 475, 183. (c) Ballet, S.; Feytens, D.;
Buysse, K.; Chung, N. N.; Lemieux, C.; Tumati, S.; Keresztes, A.; Van
Duppen, J.; Lai, J.; Varga, E.; Porreca, F.; Schiller, P. W.; Vanden
Broeck, J.; Tourwe, D. J. Med. Chem. 2011, 54, 2467. (d) Jida, M.;
Betti, C.; Urbanczyk-Lipkowska, Z.; Tourwe, D.; Ballet, S. Org. Lett.
C
Org. Lett. XXXX, XXX, XXX−XXX