5
618
S. S. Patil et al. / Tetrahedron Letters 52 (2011) 5617–5619
Table 1
FeIII OBut
O-But
Optimization of reaction conditions
t-(BuO)2
Entry
Catalyst
% mol)
Oxidant
(mol equiv)
Solvent
Temp (°C)
Yielda (%)
(
H
R
N
Z
1
2
3
4
5
6
7
8
9
FeCl
FeCl
FeCl
FeCl
FeCl
FeCl
FeCl
FeCl
2
2
2
2
2
2
2
2
(10)
(10)
(10)
(10)
(10)
(10)
(5)
(t-BuO)
(t-BuO)
TBHP (2)
CAN (2)
IBD (2)
2
(2)
(2)
DMSO
EDC
80
80
80
80
51
37
40
0
R
H
FeII
2
DMSO
DMSO
DMSO
FeIII OBu-t
R
80
0
b
tBuOH
(t-BuO)
(t-BuO)
(t-BuO)
(t-BuO)
(t-BuO)
(t-BuO)
2
2
2
2
2
2
(3)
(3)
(2)
(3)
(3)
(3)
__
100
100
100
100
100
100
85
43
68
20
70
63
H
__
__
__
__
__
(10)
N
Z
R
Fe(acac)
FeCl (10)
Fe(acac)
2
(10)
tBuOH
+
Product
1
1
0
1
3
3
Scheme 2. A proposed mechanism for the alkynylation of azole.
a
Yield is based on 1a.
b
‘
‘—’’, indicate reaction carried out without solvent.
2
using (t-BuO) as the oxidant, under solvent, base and ligand-free
conditions. This methodology is beneficial from the economical
point of view.
Table 2
Iron catalyzed alkynylation of azoles
Entry
Z
R
R1
Yielda Time (h) mp/bp (°C) (lit.)b
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
a
b
c
d
e
f
g
h
i
j
k
l
m
n
o
p
O
O
O
O
O
O
O
O
O
O
O
O
O
O
S
Me
C
6
H
5
85
52
64
50
90
88
63
65
67
72
75
66
84
81
88
86
16
20
16
16
16
16
20
20
16
16
20
20
16
16
16
16
102–104 (103–104)13
156–158 (157–158)9
165–167 (166–167)1
Acknowledgment
Me 4-CF
Me 4-Cl-C
Me 4-F-C
H
H
H
3
-C
6
H
4
3
6
H
4
The author thanks UGC, New Delhi, India, for the financial
support.
13
6
H
4
118–119 (117–118)
9
4-MeO-C
C H
6 5
1-Napthyl
4
H
4
120–123(122–123)
101–102 (100)8
8
116–118 (119)
1
3
References and notes
Me 1-Napthyl
104–106 (104–105)
1
8
3
Me n-C
n-C
6
H
H
13
oil bp <250
oil bp <250
H
6
13
1. For recent reviews of CH functionalization using transition metals, see: (a)
Alberico, D.; Scott, E. M.; Lautens, M. Chem. Rev. 2007, 107, 174; (b) Godula, K.;
Sames, D. Science 2006, 312, 67; (c) Kakiuchi, F.; Chatani, N. Adv. Synth. Catal.
2003, 345, 1077; (d) Ritleng, V.; Sirlin, C.; Pfeffer, M. Chem. Rev. 2002, 102, 1731.
2. For selected examples, see: (a) Matsuura, Y.; Tamura, M.; Kochi, T.; Sato, M.;
Chatani, N.; Kakiuchi, F. J. Am. Chem. Soc. 2007, 129, 9858; (b) Murphy, J. M.;
Lawrence, J. D.; Kawamura, K.; Incarvito, C.; Hartwig, J. F. J. Am. Chem. Soc. 2006,
1
3
Me Thiophene
Me Pyridyl
Me Si(i-Pr
H
H
H
93–94 (93–94)
1
3
112–114 (113–115)
1
1
1
2
2
2
3
3
3
)
)
)
oil bp <250
oil bp <250
oil bp <300
Si(i-Pr
Si(i-Pr
C
8
S
H
6 5
72–75 (75)
1
28, 13684; (c) Ackermann, L.; Althammer, A.; Born, R. Angew. Chem., Int. Ed.
a
2006, 45, 2169.
Yield is based on compound 1.
b
3. (a) Stokes, B. J.; Dong, H.; Leslie, B. E.; Pumphrey, A. L.; Driver, T. G. J. Am. Chem.
Soc. 2007, 129, 7500; (b) Lewis, J. C.; Bergman, R. G.; Ellman, J. A. J. Am. Chem.
Soc. 2007, 129, 5332; (c) Williams, K.; Fiori, DuBois. J. J. Am. Chem. Soc. 2007,
(
Lit) compound have been previously reported; physical and spectral data were
comparable.
1
29, 562; (d) Ravisekhara, P. R.; Davies, H. M. L. Org. Lett. 2006, 8, 5013.
4.
For selected examples, see: (a) Stuart, D. R.; Villemure, E.; Fagnou, K. J. Am.
Chem. Soc. 2007, 129, 12072; (b) Hull, K. L.; Sanford, M. S. J. Am. Chem. Soc. 2007,
2
ratio of (t-BuO) the yield was found to be low (Table 1, entries 7
and 8). We explored the scope of this reaction with optimized reac-
tion conditions and the results are summarized in Table 2.
1
(
2
29, 11904; (c) Yang, S.; Li, B.; Wan, X.; Shi, Z. J. Am. Chem. Soc. 2007, 129, 6066;
d) Inamoto, K.; Saito, T.; Katsuno, M.; Sakamoto, T.; Hiroya, K. Org. Lett. 2007, 9,
931; (e) Delcamp, J. H.; White, M. C. J. Am. Chem. Soc. 2006, 128, 15076.
It was found that phenylacetylene bearing a wide range of sub-
stituents undergoes an oxidative coupling reaction with 1 to afford
the desired products in a good yield (Table 2, entries 3a–3h). The
reaction of phenylacetylene bearing an electron donating group
provides a higher yield (Table 2, entry 3e) while the electron with-
drawing substituents resulted in lower yield of the products due to
dimerization of the alkynes. The sterically hindered 1-naphthyl-
acetylene also reacted under optimized conditions (Table 2, entries
5. (a) Guo, X.; Yu, R.; Li, H.; Li, H. J. Am. Chem. Soc. 2009, 131, 17387; (b) Li, H.; He,
Z.; Guo, X.; Li, W.; Zhao, X.; Li, Z. Org. Lett. 2009, 11, 4176; (c) Pan, S.; Liu, J.; Li,
H.; Wang, Z.; Guo, X.; Li, Z. Org. Lett. 2010, 12, 1932; (d) Guo, I.; Pan, S.; Liu, J.; Li,
Z. J. Org. Chem. 2009, 74, 8848; (e) Guan, Z. H.; Yan, Z. Y.; Ren, Z. H.; Liu, X. Y.;
Liang, M. Y. Chem. Commun. 2010, 46, 2823; (f) Rao, C. M.; Volla, Vogel. P. Org.
Lett. 2009, 11, 1701; (g) Shirakawa, E.; Uchiyama, N.; Hayashi, T. J. Org. Chem.
2011, 76, 25.
6
. Kumar, D.; David, W. M.; Kerwin, S. M. Bioorg. Med. Chem. Lett. 2001, 11, 2971.
7. (a) Hassan, J.; S e´ vignon, M.; Gozzi, C.; Schulz, E.; Lemaire, M. Chem. Rev. 2002,
102, 1359; (b) Corbet, J.-P.; Mignani, G. Chem. Rev. 2006, 106, 2651.
8
9
.
.
Matsuyama, N.; Hirano, K.; Satoh, T.; Miura, M. Org. Lett. 2009, 11, 4156.
Kim, S. H.; Chang, S. Org. Lett. 2010, 12, 1868.
3
g and 3h).The silylethylnyl group could also be readily functional-
ized to benzoxazole and benzothiazole core (Table 2, entries 3n
and 3o). The aliphatic terminal alkynes also participated in this
coupling reaction. (Table 2, entries 3i and 3j). The alkynylation of
1
0. Haro, T.; Nevado, C. J. Am. Chem. Soc. 2010, 132, 1512.
11. Wei, Y.; Zhao, H.; Kan, J.; Su, W.; Hong, M. J. Am. Chem. Soc. 2010, 132, 2522.
1
2. Matsuyama, N.; Kitahara, M.; Hirano, K.; Satoh, T.; Miura, M. Org. Lett. 2010, 12,
358.
3. Hwan, S.; Yoon, K. J.; Chan, S. Org. Lett. 2011, 13, 1474.
2
1
with heterocyclic acetylene with high efficiency provided good
1
yield of the product (Table 2, entries 3k and 3l).
14. (a) Fürstner, A.; Martin, R.; Krause, H.; Seidel, G.; Goddard, R.; Lehmann, C. W. J.
Am. Chem. Soc. 2008, 130, 8773. and references therein; (b) Sherry, B. D.;
Fürstner, A. Acc. Chem. Res. 2008, 41, 1500; (c) Plietker, B. Iron Catalysis in
Organic Chemistry; Wiley-VCH: Weinheim, 2008; (d) Bauer, E. B. Curr. Org.
Chem. 2008, 12, 1341; (e) Norinder, J.; Matsumoto, A.; Yoshikai, N.; Nakamura,
E. J. Am. Chem. Soc. 2008, 130, 5858; (f) Enthaler, S.; Junge, K.; Beller, M. Angew.
Chem., Int. Ed. 2008, 47, 3317; (g) Carril, M.; Correa, A.; Bolm, C. Angew. Chem.,
Int. Ed. 2008, 47, 4862; (h) Volla, C. M. R.; Vogel, P. Angew. Chem., Int. Ed. 2008,
47, 1305; (i) Loska, R.; Volla, C. M. R. Adv. Synth. Catal. 2008, 350, 2859; (j)
Reymond, S.; Ferri e´ , L.; Guerinot, A.; Capdevielle, P.; Cossy, J. Pure Appl. Chem.
Although more comprehensive studies are required to describe
the mechanistic details, a plausible pathway of the alkynylation of
azole is shown in Scheme 2. It is postulated that an initial reaction
III
t
2
of t-butyl peroxide with FeCl generates Fe –O Bu and t-butyl rad-
ical. The deprotonation of an azole C(2)–H bond takes place by the
action of t-butoxy radical leading to an azole radical that subse-
quently reacts with an in situ generated iron acetylide complex
to give the 2-alkynylazole product and Fe(II) species.
In summary, we have described an effective iron catalyst sys-
tem for the direct alkynylation of azoles with terminal alkynes
2008, 80, 1683; (k) Volla, C. M. R.; Vogel, P. Tetrahedron Lett. 2008, 49, 5961.
1
5. General procedure for the iron-catalyzed oxidative alkynylation of azoles
FeCl2 (0.1 mmol), benzoxazole (1 mmol), terminal alkyne (1.2 mmol) and tert-
butyl peroxide (3 mmol) were placed in a tube. The tube was purged with air