ACS Catalysis
Research Article
experiments. In the case of Pt/TiO2, this could be the result of
participation of spillover hydrogen in the reaction37 because
incorporation of random H atoms is not expected to produce
any PHIP effects. The activity of the Pt/SiO2 catalyst was
significantly lower than that of Pt/TiO2: no reaction was
observed at 120 °C; at 150 °C (in ALTADENA conditions)
decarbonylation leading to ethane began, and only at 300 °C
did the hydrogenation become apparent, but without any PHIP
effects.
REFERENCES
■
(1) Narayanan, S. Bull. Catal. Soc. Ind. 2003, 2, 107−121.
(2) Claus, P. Top. Catal. 1998, 5, 51−62.
(3) Gallezot, P.; Richard, D. Catal. Rev.: Sci. Eng. 1998, 40, 81−126.
(4) Maki-Arvela, P.; Haj
́
ek, J.; Salmi, T.; Murzin, D. Yu. Appl. Catal.,
̈
A 2005, 292, 1−49.
(5) Ponec, V. Appl. Catal., A 1997, 149, 27−48.
(6) Daimon, A.; Kamitanaka, T.; Kishida, N.; Matsuda, T.; Harada, T.
J. Supercrit. Fluids 2006, 37, 215−219.
(7) de Graauw, C. F.; Peters, J. A.; van Bekkum, H.; Huskens, J.
Synthesis 1994, 10, 1007−1017.
(8) Touroude, R. J. Catal. 1980, 65, 110−120.
(9) Birchem, T.; Pradier, C. M.; Berthier, Y.; Cordier, G. J. Catal.
1994, 146, 503−510.
CONCLUSION
■
Parahydrogen-induced polarization (PHIP) was used for
studying the heterogeneous hydrogenation of several unsatu-
rated (acrolein, crotonaldehyde) and saturated (acetone,
propanal) carbonyl compounds. PHIP effects were successfully
observed in liquid and gas phase hydrogenations of the CC
bond of acrolein and crotonaldehyde over several supported
metal catalysts. These observations confirm the existence of the
route of pairwise hydrogen addition to the CC bond of
unsaturated aldehydes in the reaction mechanism. At the same
time, no PHIP effects that would correspond to pairwise
hydrogen addition to the CO bond could be observed for
unsaturated and saturated substrates tested. However, the
conversion to alcohols was very low in all cases. Therefore, to
address the feasibility of PHIP observation in CO bond
hydrogenation it would be valuable to come up with catalytic
systems and reaction conditions that provide a much higher
activity in this reaction. Upon hydrogenation of acrolein over
several of the supported metal catalysts, the NMR signal of the
CHO group of propanal was also polarized, possibly as a result
of a minor process in which the C(O)−H bond is broken.
Furthermore, the formation of polarized cis- and trans-2-
butenes was detected in hydrogenation of acrolein over several
Rh-based catalysts, and polarized propane was formed in
heterogeneous hydrogenation of acetone and propanal as a
result of C−O bond hydrogenolysis. This demonstrates that the
applicability of PHIP can be successfully extended from
hydrogenations to other more complex catalytic reactions,
which generally improves the availability of PHIP as the
technique for uncovering fine details of catalytic processes
including identification of the structure and the mechanism of
formation of less abundant reaction products.
(10) Delbecq, F.; Sautet, P. J. Catal. 1995, 152, 217−236.
(11) Wei, H.; Gomez, C.; Liu, J.; Guo, N.; Wu, T.; Lobo-Lapidus, R.;
Marshall, C. L.; Miller, J. T.; Meyer, R. J. J. Catal. 2013, 298, 18−26.
(12) Tauster, S. J.; Fung, S. C.; Garten, R. L. J. Am. Chem. Soc. 1978,
100, 170−175.
(13) Tauster, S. J. Acc. Chem. Res. 1987, 20, 389−394.
(14) Bowers, C. R.; Weitekamp, D. P. J. Am. Chem. Soc. 1987, 109,
5541−5542.
(15) Pravica, M. G.; Weitekamp, D. P. Chem. Phys. Lett. 1988, 145,
255−258.
(16) Duckett, S. B.; Mewis, R. E. Acc. Chem. Res. 2012, 45, 1247−
1257.
(17) Natterer, J.; Bargon, J. Prog. NMR Spectrosc. 1997, 31, 293−315.
(18) Blazina, D.; Duckett, S. B.; Dunne, J. P.; Godard, C. Dalton
Trans. 2004, 2601−2609.
(19) Kovtunov, K. V.; Zhivonitko, V. V.; Skovpin, I. V.; Barskiy, D.
A.; Koptyug, I. V. In Topics in Current Chemistry; Kuhn, L. T., Ed.;
Springer-Verlag: Berlin, 2013; Vol. 338, pp 123−180.
(20) Kovtunov, K.; Beck, I.; Bukhtiyarov, V.; Koptyug, I. Angew.
Chem., Int. Ed. 2008, 47, 1492−1495.
(21) Zhivonitko, V. V.; Kovtunov, K. V.; Beck, I. E.; Ayupov, A. B.;
Bukhtiyarov, V. I.; Koptyug, I. V. J. Phys. Chem. C 2011, 115, 13386−
13391.
(22) Kovtunov, K. V.; Beck, I. E.; Zhivonitko, V. V.; Barskiy, D. A.;
Bukhtiyarov, V. I.; Koptyug, I. V. Phys. Chem. Chem. Phys. 2012, 14,
11008−11014.
(23) Koptyug, I. V.; Kovtunov, K. V.; Burt, S. R.; Anwar, M. S.; Hilty,
C.; Han, S.; Pines, A.; Sagdeev, R. Z. J. Am. Chem. Soc. 2007, 129,
5580−5586.
(24) Kovtunov, K. V.; Barskiy, D. A.; Salnikov, O. G.; Khudorozhkov,
A. K.; Bukhtiyarov, V. I.; Prosvirin, I. P.; Koptyug, I. V. Chem.
Commun. 2014, 50, 875−878.
(25) Henning, H.; Dyballa, M.; Scheibe, M.; Klemm, E.; Hunger, M.
Chem. Phys. Lett. 2013, 555, 258−262.
ASSOCIATED CONTENT
■
́
̊
(26) Golman, K.; Axelsson, O.; Johannesson, H.; Mansson, S.;
S
* Supporting Information
Olofsson, C.; Petersson, J. S. Magn. Reson. Med. 2001, 46, 1−5.
(27) Bhattacharya, P.; Harris, K.; Lin, A. P.; Mansson, M.; Norton, V.
A.; Perman, W. H.; Weitekamp, D. P.; Ross, B. D. Magn. Reson. Mater.
Phys. Biol. Med. 2005, 18, 245−256.
Catalysts used, experimental setup and conditions, and
additional NMR spectra. This material is available free of
(28) Reineri, F.; Viale, A.; Giovenzana, G.; Santelia, D.; Dastru, W.;
Gobetto, R.; Aime, S. J. Am. Chem. Soc. 2008, 130, 15047−15053.
(29) Dechent, J. F.; Buljubasich, L.; Schreiber, L. M.; Spiess, H. W.;
AUTHOR INFORMATION
■
Munnemann, K. Phys. Chem. Chem. Phys. 2012, 14, 2346−2352.
Corresponding Author
̈
(30) Balu, A. M.; Duckett, S. B.; Luque, R. Dalton Trans. 2009,
5074−5076.
Notes
(31) Koptyug, I. V.; Zhivonitko, V. V.; Kovtunov, K. V.
ChemPhysChem 2010, 11, 3086−3088.
The authors declare no competing financial interest.
(32) Akhmadullina, N. S.; Cherkashina, N. V.; Kozitsyna, N. Yu.;
Stolarov, I. P.; Perova, E. V.; Gekhman, A. E.; Nefedov, S. E.; Vargaftik,
M. N.; Moiseev, I. I. Inorg. Chim. Acta 2009, 362, 1943−1951.
(33) Moudler, J.; Stickle, W.; Sobol, P.; Bomben, K. Handbook of X-
ray Photoelectron Spectroscopy; Perkin-Elmer Corp.: Eden Priarie, MN,
1992.
ACKNOWLEDGMENTS
■
This work was partially supported by the RAS (5.1.1), RFBR
(12-03-00403-a, 14-03-00374-a, 14-03-31239-mol-a), SB RAS
(60, 61), the Ministry of Education and Science of the Russian
Federation, and the Council on Grants of the President of the
Russian Federation (MK-4391.2013.3).
2027
dx.doi.org/10.1021/cs500426a | ACS Catal. 2014, 4, 2022−2028