Communication
RSC Advances
5% WO3–Ta2O5 aer each reaction, the catalyst was separated,
washed with deionized water, and dried at 60 C for 12 hours
volume 1-results of screening for potential candidates from
sugars and synthesis gas, 2004.
ꢀ
prior to being reused in the next run. As shown in Fig. 4, the
reaction using the fresh 5% WO3–Ta2O5 proceeds efficiently
produced a LA yield of 89%. The reused catalyst has not shown
signicant loss of activity. The yield of LA was 56% in the
second use, 52% in the third use, and 53% in the fourth use. In
7 B. Girisuta, L. P. B. M. Janssen and H. J. Heeres, Green Chem.,
2006, 8, 701–709.
8 F. M. Jin and H. Enomoto, Energy Environ. Sci., 2011, 4, 382–
397.
9 B. R. Caes and R. T. Raines, ChemSusChem, 2011, 4, 353–356.
addition, the HMF yield was 8% in the rst use, which increased 10 V. Degirmenci, E. A. Pidko, P. C. M. M. Magusin and
sharply to 41% in the second use, 43% in the third use, and 46% E. J. M. Hensen, ChemCatChem, 2011, 3, 969–972.
in the fourth use. Moreover, the sum of the LA and HMF yields 11 F. Yang, Q. Liu, M. Yue, X. Bai and Y. Du, Chem. Commun.,
little changed in the rst four uses but decreased in the h 2011, 47, 4469–4471.
uses, which may be attributed to catalyst deactivation. The exact 12 A. S. Amarasekara and C. C. Ebede, Bioresour. Technol., 2009,
mechanism of catalyst deactivation requires further studies.
100, 5301–5304.
13 M. Brasholz, K. von Kanel, C. H. Hornung, S. Saubern and
J. Tsanaktsidis, Green Chem., 2011, 13, 1114–1117.
14 Y. Takeuchi, F. M. Jin, K. Tohji and H. Enomoto, J. Mater.
Sci., 2008, 43, 2472–2475.
15 J.-P. Lange, Angew. Chem., Int. Ed., 2015, 54, 13186–13197.
16 B. Chamnankid, C. Ratanatawanate and K. Faungnawakij,
Chem. Eng. J., 2014, 258, 341–347.
17 H. Z. Chen, B. Yu and S. Y. Jin, Bioresour. Technol., 2011, 102,
3568–3570.
18 D. W. Rackemann and W. O. S. Doherty, Biofuels, Bioprod.
Bioren., 2011, 5, 198–214.
Conclusions
The WO3–Ta2O5 catalyst at different WO3 to Ta2O5 ratios and
different acid strengths was synthesized and evaluated in the
conversion of monosaccharide and Jerusalem artichoke juice
into HMF and LA in a water-containing biphasic system. There
apparently are few Brønsted acid sites on the tungsten oxide
incorporated in the tantalum compound and the Lewis acid
declined with the increase in WO3. The ratio of WO3 inuenced
the products distribution while 5% WO3–Ta2O5 showed the best
activity and selectivity to LA. The catalyst is also active in the
conversion of Jerusalem artichoke juice. Experiments using
recycled catalysts indicate that the WO3–Ta2O5 catalyst can be
recycled and reused. It is believed that the carbohydrate dehy-
dration into HMF and HMF rehydration into LA continues in
the presence of the acid sites on the catalyst. Further studies are
in progress.
19 J. Jow, G. L. Rorrer, M. C. Hawley and D. T. A. Lamport,
Biomass, 1987, 14, 185–194.
20 W. Zeng, D. G. Cheng, H. H. Zhang, F. Q. Chen and
X. L. Zhan, React. Kinet., Mech. Catal., 2010, 100, 377–384.
21 Y. K. Kim, R. Rousseau, B. D. Kay, J. M. White and
Z. Dohnalek, J. Am. Chem. Soc., 2008, 130, 5059–5061.
22 K. Nakajima, Y. Baba, R. Noma, M. Kitano, J. N. Kondo,
S. Hayashi and M. Hara, J. Am. Chem. Soc., 2011, 133,
4224–4227.
23 X. Chan, W. Nan, D. Mahajan and T. Kim, Catal. Commun.,
2015, 72, 11–15.
24 C. Sievers, I. Musin, T. Marzialetti, M. B. V. Olarte,
P. K. Agrawal and C. W. Jones, ChemSusChem, 2009, 2,
665–671.
Acknowledgements
This work was nancially supported by the National Natural
Science Foundation of China (project 21406020), National High
Technology Research and Development Program of China
(2014AA022004) and Natural Science Foundation of Jiangsu
Province (project BK20140257).
25 B. F. M. Kuster, Starch/Staerke, 1990, 42, 314–321.
26 T. Ushikubo and K. Wada, Appl. Catal., 1990, 67, 25–38.
27 S. Suacharoen and D. N. Tungasmita, J. Chem. Technol.
Biotechnol., 2013, 88, 1538–1544.
Notes and references
1 A. J. Crisci, M. H. Tucker, M. Y. Lee, S. G. Jang, J. A. Dumesic
and S. L. Scott, ACS Catal., 2011, 1, 719–728.
2 J. Lewkowski, ARKIVOC, 2001, 2, 17–54.
3 D. M. Alonso, J. Q. Bond and J. A. Dumesic, Green Chem.,
2010, 12, 1493–1513.
4 J. J. Bozell and G. R. Petersen, Green Chem., 2010, 12, 539–
554.
5 A. A. Rosatella, S. P. Simeonov, R. F. M. Frade and
C. A. M. Afonso, Green Chem., 2011, 13, 754–793.
6 G. Petersen, T. Werpy, A. Aden, J. Bozell, J. Holladay, J. White
and A. Manheim, Top value added chemicals from biomass
28 T. Thananatthanachon and T. B. Rauchfuss, Angew. Chem.,
Int. Ed., 2010, 49, 6616–6618.
29 S.-Z. Li and C. Chan-Halbrendt, Appl. Energy, 2009, 86, S162–
S169.
30 S. J. Kay and S. F. Nottingham, Biology and Chemistry of
Jerusalem Artichoke, CRC Press, Boca Raton, 2007.
31 M. G. Mazzotta, D. Gupta, B. Saha, A. K. Patra, A. Bhaumik
and M. M. Abu-Omar, ChemSusChem, 2014, 7, 2342–2350.
This journal is © The Royal Society of Chemistry 2016
RSC Adv., 2016, 6, 49760–49763 | 49763