Full Paper
[D6]DMSO): δ = 142.4 (142.2), 119.9 (119.8), 90.7 (89.5), 75.0 (75.6),
≈ 39.2 (≈ 39.2), 30.8 (29.8), 24.4 (24.5), ≈ 18.5 (≈ 18.5), ≈ 13.5 (≈ 13.5),
≈ 13.3 (≈ 13.3) ppm. HRMS (ESI): calcd. for C10H18N2O4 [M + H]+
231.1339, found 231.1341.
points, ORCA 4.0.1 was employed.[56] For further details see Sup-
porting Information.
Acknowledgments
General Procedure for the Synthesis of Hetero-Dimers: L-proline
We would like to thank the German Science Foundation (DFG,
GS 13/3-1 and GS 13/4-1) for financial support. We regret that
Dr. Markus Schmid refused to be Co-author of this manuscript
and preferred to be cited in the given way. Nevertheless, we
would like to thank him for the initialization of this project de-
tecting first this unprecedented enyne formation.
(0.2 mmol) and benzoic acid (0.2 mmol) were dissolved in DMSO
(7 mL) at room temperature. Subsequently, the corresponding nitro-
alkenes (0.3 mmol each) were added. The solution was stirred for
24
h under atmospheric conditions. After the reaction was
quenched by adding brine (10 mL) the reaction mixture was ex-
tracted 4 times with diethyl ether (10 mL each). The combined or-
ganic layers were washed 4 times with distilled water (10 mL each)
and dried with magnesium sulfate. After evaporation of the solvent
the raw product was purified by flash column chromatography (PE/
EA = 9:1).
Keywords: NMR spectroscopy · Enynes · Nitronates ·
Reaction mechanisms · Theoretical calculations
1-(5-Methyl-1,3-dinitrohex-4-en-2-yl)-2-nitrobenzene
(3b):
Nitroalkenes (E)-3-methyl-1-nitrobut-1-ene and (E)-1-nitro-2-(2-
nitrovinyl)benzene were applied as starting material. 24 % yield. H
[1] M. Konishi, H. Ohkuma, K. Matsumoto, T. Tsuno, H. Kamei, T. Miyaki, T.
Oki, H. Kawaguchi, G. D. Vanduyne, J. Clardy, J. Antibiot. 1989, 42, 1449–
1452.
[2] A. Stuetz, G. Petranyi, J. Med. Chem. 1984, 27, 1539–1543.
[3] D. E. Rudisill, L. A. Castonguay, J. K. Stille, Tetrahedron Lett. 1988, 29,
1509–1512.
[4] J. R. Frost, C. M. Pearson, T. N. Snaddon, R. A. Booth, R. M. Turner, J. Gold,
D. M. Shaw, M. J. Gaunt, S. V. Ley, Chem. Eur. J. 2015, 21, 13261–13277.
[5] T. Masaoka, Y. Hasegawa, T. Ueda, T. Takubo, H. Shibata, H. Nakamura, N.
Tatsumi, J. Yoshitake, N. Senda, Eur. J. Cancer 1976, 12, 143–149.
[6] B. M. Trost, L. Li, S. D. Guile, J. Am. Chem. Soc. 1992, 114, 8745–8747.
[7] B. M. Trost, L. S. Chupak, T. Lübbers, J. Am. Chem. Soc. 1998, 120, 1732–
1740.
[8] K. Karthikeyan, T. Veenus Seelan, K. G. Lalitha, P. T. Perumal, Bioorg. Med.
Chem. Lett. 2009, 19, 3370–3373.
[9] M. C. Pirrung, L. N. Tumey, C. R. H. Raetz, J. E. Jackman, K. Snehalatha,
A. L. McClerren, C. A. Fierke, S. L. Gantt, K. M. Rusche, J. Med. Chem. 2002,
45, 4359–4370.
[10] R. Maurya, P. Gupta, G. Ahmad, D. K. Yadav, K. Chand, A. B. Singh, A. K.
Tamrakar, A. K. Srivastava, Med. Chem. Res. 2008, 17, 123–136.
[11] H. Jiang, P. Elsner, K. Jensen, A. Falcicchio, V. Marcos, K. A. Jørgensen,
Angew. Chem. Int. Ed. 2009, 48, 6844–6848; Angew. Chem. 2009, 121,
6976.
[12] Y. Hatanaka, K. Matsui, T. Hiyama, Tetrahedron Lett. 1989, 30, 2403–2406.
[13] Y. Hatanaka, T. Hiyama, J. Org. Chem. 1988, 53, 918–920.
[14] B. P. Andreini, A. Carpita, R. Rossi, B. Scamuzzi, Tetrahedron 1989, 45,
5621–5640.
[15] L.-X. Shao, M. Shi, J. Org. Chem. 2005, 70, 8635–8637.
[16] D. Saha, T. Chatterjee, M. Mukherjee, B. C. Ranu, J. Org. Chem. 2012, 77,
9379–9383.
[17] N. Miyaura, K. Yamada, A. Suzuki, Tetrahedron Lett. 1979, 20, 3437–3440.
[18] P.-F. Li, H.-L. Wang, J. Qu, J. Org. Chem. 2014, 79, 3955–3962.
[19] H. Feuer, Nitrile Oxides, Nitrones, and Nitronates in Organic Synthesis John
Wiley & Sons, 2008.
[20] J. M. Robinson, S. F. Tlais, J. Fong, R. L. Danheiser, Tetrahedron 2011, 67,
9890–9898.
[21] M. Uchiyama, H. Ozawa, K. Takuma, Y. Matsumoto, M. Yonehara, K. Hi-
roya, T. Sakamoto, Org. Lett. 2006, 8, 5517–5520.
[22] L. Anastasia, C. Xu, E. Negishi, Tetrahedron Lett. 2002, 43, 5673–5676.
[23] V. Komanduri, M. J. Krische, J. Am. Chem. Soc. 2006, 128, 16448–16449.
[24] Y.-T. Hong, C.-W. Cho, E. Skucas, M. J. Krische, Org. Lett. 2007, 9, 3745–
3748.
[25] G. Gervasio, P. J. King, D. Marabello, E. Sappa, Inorg. Chim. Acta 2003,
350, 215–244.
[26] M. B. Schmid, NMR Spectroscopic Investigations on Aminocatalysis: Cata-
lysts and Intermediates, Conformations and Mechanisms Dissertation,
2011.
[27] P. Shanbhag, P. R. Nareddy, M. Dadwal, S. M. Mobin, I. N. N. Namboothiri,
Org. Biomol. Chem. 2010, 8, 4867–4873.
1
NMR (400 MHz, [D6]DMSO): δ = 8.09 (7.89) [d (d), J = 7.9 Hz (7.9 Hz)],
7.94 (7.94) (dd, J = 8.1 Hz, 1.2 Hz), 7.78 (7.78) (ddd, J = 7.8 Hz,
7.8 Hz, 1.1 Hz), 7.59 (7.59) (ddd, J = 7.8 Hz, 7.8 Hz, 1.2 Hz), 5.90
(6.03) [dd (dd), J = 9.9 Hz, 9.9 Hz (10.1 Hz, 10.1 Hz)], 5.44 (5.29) [dqq
(dqq), J = 9.7 Hz, 1.3 Hz, 1.3 Hz (10·Hz, 1.3 Hz, 1.3 Hz)], 5.08 (5.22)
[dd (dd), J = 13.8 Hz, 8.6 Hz (14.4 Hz, 10.3 Hz)], 4.96 (5.08) [dd (m),
J = 13.8 Hz, 5.5 Hz], 4.79 (4.88) [ddd (ddd), J = 9.8 Hz, 8.7 Hz, 5.4 Hz
(9.9 Hz, 9.9 Hz, 4.4 Hz)], 1.82 (1.59) [d (d), J = 1.1 Hz (1.2 Hz)], 1.79
(1.53) [d (d), J = 1.0 Hz (1.1 Hz)] ppm. 13C NMR (400 MHz, [D6]DMSO):
δ = 149.9 (150.3), 146.3 (146.4), 133.3 (133.3), 129.6 (129.6), 129.4
(129.1), 129.1 (129.0), 124.8 (124.8), 118.5 (116.6), 86.8 (85.3), 75.9
(76.7), 40.5 (39.7), 25.4 (25.1), 18.4 (18.1) ppm. HRMS (ESI): calcd. for
C
13H15N3O6 [M + Na]+ 332.0853, found 332.0855.
1-Methoxy-2-(5-methyl-1,3-dinitrohex-4-en-2-yl)benzene (3c):
Nitroalkenes (E)-3-methyl-1-nitrobut-1-ene and 1-methoxy-2-[(E)-2-
1
nitrovinyl]benzene were applied as starting material. 24 % yield. H
NMR (400 MHz, [D6]DMSO): δ = 7.31 (7.31) (dd, J = 7.5 Hz, 1.7 Hz,
1 H), 7.29 (7.29) (ddd, J = 7.9 Hz, 7.9 Hz, 1.6 Hz, 1 H), 7.03 (7.00) [dd
(dd), J = 8.3 Hz, 0.7 Hz (8.2 Hz, 0.7 Hz), 1 H], 6.91 (6.91) (ddd, J =
7.4 Hz, 7.4 Hz, 1.0 Hz, 1 H), 5.87 (5.82) [dd (dd), J = 10.2 Hz, 10.2 Hz
(9.9 Hz, 9.9 Hz), 1 H], 5.46 (5.19) [dqq (dqq), J = 9.9 Hz, 1.4 Hz, 1.4 Hz
(9.9 Hz, 1.4 Hz, 1.4 Hz), 1 H], 4.89/4.80 (5.11/4.91) [dd/dd (dd), J =
13.4 Hz, 8.8 Hz/13.4 Hz, 5.6 Hz (13.3 Hz, 10.1 Hz), 2 H], 4.40 (4.50)
[ddd (ddd), J = 10.2 Hz, 8.8 Hz, 5.7 Hz (9.9 Hz, 9.9 Hz, 4.7 Hz), 1 H],
3.83 (3.81) [s (s), 3 H] 1.79 (1.55) [d (d), J = 1.4 Hz (1.4 Hz), 3 H], 1.79
(1.53) [d (d), J = 1.4 Hz (1.3 Hz), 3 H] ppm. 13C NMR (400 MHz,
[D6]DMSO): δ = 149.9 (150.3), 145.0 (142.7), 129.6 (129.6), 129.4
(129.4), 122.7 (122.4), 120.6 (120.6), 117.1 (117.3), 111.7 (111.4), 86.0
(85.5), 75.5 (75.8), 55.7 (55.6), 42.2 (41.3), 25.4 (25.1), 18.3 (17.8) ppm.
HRMS (ESI): calcd. for C14H18N2O5 [M + Na]+ 317.1108, found
317.1112.
For scope and syntheses of conjugated enynes and cyclic nitronates
see Supporting Information.
Computational Details: For the calculation, a smaller model of
dimer 3a was employed. The n-propyl group and the terminal ethyl
group connected with the double bond were substituted by a
methyl group. All structures were optimized at M06–2X/def2-SVP
level of theory using empirical dispersion D3 in continuum of DMF
(CPCM).[51–53] Thermochemical correction was performed at the
same level of theory as the geometry optimization. Single point
calculations were carried out at PWPB95-D3/def2TZVPP level of
theory.[54] The software used for the geometry optimization and
frequency analysis was Gaussian09 version D.01.[55] For the single
[28] K. Kaur, I. N. N. Namboothiri, Chimia 2012, 66, 913–920.
[29] D. Nair, T. Kumar, I. Namboothiri, Synlett 2016, 27, 2425–2442.
Eur. J. Org. Chem. 0000, 0–0
9
© 0000 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim