10.1002/anie.201909052
Angewandte Chemie International Edition
COMMUNICATION
[3]
[4]
C. B. Cui, H. Kakeya, G. Okada, R. Onose, H. Osada, J. Antibiot. 1996,
49, 527.
is sufficient to almost completely abrogate gliotoxin biosynthesis.
These observations highlight the importance of dedicated
cyclization domains in fungal NRPSs.[25,26] Gliotoxin (1) is a
representative member of a large class of NRPS-derived DKPs
that seem likely to be produced via similar mechanisms.
Analysis of available fungal genomes revealed 56 putative
NRPSs that feature terminal domains homologous to the CTT3
tandem in GliP (see Supporting Methods, Table S1, and
Figure S9), indicating a conserved biosynthetic strategy for DKP
formation.[13,27]
Whereas the GliP CT domain is homologous to the recently
described CT domains that catalyze cyclization of fungal
tripeptides;[15] the requirement of an additional TC domain for
DKP formation is perhaps unexpected, given that dipeptide
thioesters often cyclize non-enzymatically, as we showed in our
in vitro studies. We note that TC domains in DKP-producing
NRPSs could serve as a tether for linear dipeptides during
tailoring by other cluster enzymes. Although there is substantial
evidence that, in the case of gliotoxin, many of the later steps of
its biosynthesis proceed via untethered, cyclic intermediates, the
structures of shunt metabolites in related DKP biosynthesis
pathways may suggest tailoring of tethered dipeptides. For
example, in the case of hexadehydroastechrome, which is
derived from cyclo-Trp-Ala derivatives, abundant production of
prenylated tryptophan in mutants defective in late-stage tailoring
enzymes could be due to recycling of a tethered prenylated Trp-
Ala dipeptide (Figure S10).[28]
D. K. Nilov, K. I. Yashina, I. V. Gushchina, A. L. Zakharenko, M. V.
Sukhanova, O. I. Lavrik, V. K. Švedas, Biochemistry (Mosc) 2018, 83,
152.
[5]
[6]
X. Wang, Y. Li, X. Zhang, D. Lai, L. Zhou, Molecules 2017, 22, 2026.
R. Forseth, E. Fox, D. Chung, B.J. Howlett, N.P. Keller, F.C. Schroeder,
J. Am. Chem. Soc. 2011, 133, 9678.
[7]
[8]
D. H. Scharf, T. Heinekamp, N. Remme, P. Hortschansky, A. A.
Brakhage, C. Hertweck, Appl. Microbio.l Biotechnol. 2011, 93, 467.
D. H. Scharf, N. Remme, A. Habel, P. Chankhamjon, K. Scherlach, T.
Heinekamp, P. Hortschansky, A. A. Brakhage, C. Hertweck, J. Am.
Chem. Soc. 2011, 133, 12322.
[9]
D. H. Scharf, P. Chankhamjon, K. Scherlach, T. Heinekamp, K. Willing,
A. A. Brakhage, C. Hertweck, Angew. Chem. Int. Ed. Engl. 2013, 52,
11092.
[10] S. K. Dolan, G. O'Keeffe, G. W. Jones, S. Doyle, Trends Microbiol.
2015, 23, 419.
[11] S.L. Chang, Y.M. Chiang, H.H. Yeh, T.K. Wu, C. C. C. Wang, Bioorg.
Med. Chem. Lett. 2013, 23, 2155.
[12] D. H. Scharf, J. D. Dworschak, P. Chankhamjon, K. Scherlach, T.
Heinekamp, A. A. Brakhage, C. Hertweck, ACS Chem. Biol. 2018, 13,
2508.
[13] D. M. Gardiner, B. J. Howlett, FEMS Microbiol. Lett. 2005, 248, 241.
[14] C. J. Balibar, C. T. Walsh, Biochemistry 2006, 45, 15029–15038.
[15] X. Gao, S. W. Haynes, B. D. Ames, P. Wang, L. P. Vien, C. T. Walsh,
Y. Tang, Nat. Chem. Biol. 2012, 8, 1.
[16] M. Schrettl, S. Carberry, K. Kavanagh, H. Haas, G. W. Jones, J.
O'Brien, A. Nolan, J. Stephens, O. Fenelon, S. Doyle, PLoS Pathog.
2010, 6, e1000952.
[17] A. Marion, M. Groll, D. H. Scharf, K. Scherlach, M. Glaser, H. Sievers,
M. Schuster, C. Hertweck, A. A. Brakhage, I. Antes, et al., ACS Chem.
Biol. 2017, 12, 1874.
In conclusion, our study suggests a general framework for
fungal DKP biosynthesis, wherein the TC domain serves as a
tether for dipeptide cyclization by an adjacent CT domain and
potentially for tailoring by other cluster enzymes. Furthermore,
our characterization of the biosynthetic roles of the CT and TC
domains in DKP formation extends the functional repertoire of
NRPS domains.
[18] D. H. Scharf, A. Habel, T. Heinekamp, A. A. Brakhage, C. Hertweck, J.
Am. Chem. Soc. 2014, 136, 11674.
[19] D. H. Scharf, P. Chankhamjon, K. Scherlach, T. Heinekamp, M. Roth,
A. A. Brakhage, C. Hertweck, Angew. Chem. Int. Ed. Engl. 2012, 51,
10064.
[20] S. K. Dolan, R. A. Owens, G. O'Keeffe, S. Hammel, D. A. Fitzpatrick, G.
W. Jones, S. Doyle, Chem. Biol. 2014, 21, 999.
[21] R. A. Cramer, M. P. Gamcsik, R. M. Brooking, L. K. Najvar, W. R.
Kirkpatrick, T. F. Patterson, C. J. Balibar, J. R. Graybill, J. R. Perfect, S.
N. Abraham, et al., Eukaryotic Cell 2006, 5, 972.
Acknowledgements
[22] R. R. Forseth, S. Amaike, D. Schwenk, K. J. Affeldt, D. Hoffmeister, F.
C. Schroeder, N. P. Keller, Angew. Chem. Int. Ed. Engl. 2012, 52,
1590.
This research was funded by an NIH Chemical Biology Interface
(CBI) Training Grant (5T32GM008500) to J.A.B., an NIH
Predoctoral
Training
Program
in
Genetics
Grant
[23] J. Yin, A. J. Lin, D. E. Golan, C. T. Walsh, Nat. Protoc. 2006, 1, 280.
[24] P. C. Dorrestein, S. B. Bumpus, C. T. Calderone, S. Garneau-
Tsodikova, Z. D. Aron, P. D. Straight, R. Kolter, C. T. Walsh, N. L.
Kelleher, Biochemistry 2006, 45, 12756.
(5T32GM007133-40) to B.T.P., and NIH R01GM112739-01 to
N.P.K. and F.C.S. We thank Prof. Robert Cramer for the kind gift
of the GliP plasmid.
[25] K. D. Clevenger, R. Ye, J. W. Bok, P. M. Thomas, M. N. Islam, G. P.
Miley, M. T. Robey, C. Chen, K. Yang, M. Swyers, et al., ACS Chem.
Biol. 2018, 57, 3237.
Conflict of interest
[26] M. T. Robey, R. Ye, J. W. Bok, K. D. Clevenger, M. N. Islam, C. Chen,
R. Gupta, M. Swyers, E. Wu, P. Gao, et al., Biochemistry 2018, 13,
1142.
The authors declare no conflict of interest.
Keywords: gliotoxin • diketopiperazine • biosynthesis •
cyclization • NRPS
[27] M. Johnson, I. Zaretskaya, Y. Raytselis, Y. Merezhuk, S. McGinnis, T.
L. Madden, Nucleic Acids Res. 2008, 36, W5.
[28] W.-B. Yin, J. A. Baccile, J. W. Bok, Y. Chen, N. P. Keller, F. C.
Schroeder, J. Am. Chem. Soc. 2013, 135, 2064.
[1]
[2]
D. H. Scharf, A. A. Brakhage, P. K. Mukherjee, Environ. Microbiol.
2016, 18, 1096.
Y. Wang, Z. L. Li, J. Bai, L. M. Zhang, X. Wu, L. Zhang, Y. H. Pei, Y. K.
Jing, H. M. Hua, Chem. Biodiversity 2012, 9, 385.
This article is protected by copyright. All rights reserved.