LETTER
Synthesis of Difluorinated ortho-Terphenyls
915
(4) Beller, M.; Neumann, H.; Anbarasan, P. Angew. Chem. Int.
Ed. 2009, 48, 1.
more sterically hindered
less electron-deficient
F
Br
Br
(5) Metal-Catalyzed Cross-Coupling Reactions; de Meijere, A.;
Diederich, F., Eds.; Wiley-VCH: Weinheim, 2004.
(6) (a) Schmidbaur, H.; Kumberger, O. Chem. Ber. 1993, 126,
3. (b) Dinger, M. B.; Henderson, W. J. Organomet. Chem.
1998, 560, 233. (c) Liedtke, J.; Loss, S.; Widauer, C.;
Grützmacher, H. Tetrahedron 2000, 56, 143. (d) Schneider,
S.; Tzschucke, C. C.; Bannwarth, W. Multiphase
F
less sterically hindered
more electron-deficient
Figure 3 Possible explanation for the site selectivity of cross-
coupling reactions of 1
Homogeneous Catalysis; Cornils, B.; Herrmann, W. A.;
Horvath, I. T.; Leitner, W.; Mecking, S.; Olivier-Booubigou,
H.; Vogt, D., Eds.; Wiley-VCH: Weinheim, 2005, Chap. 4,
346. (e) Clarke, D.; Ali, M. A.; Clifford, A. A.; Parratt, A.;
Rose, P.; Schwinn, D.; Bannwarth, W.; Rayner, C. M. Curr.
Top. Med. Chem. 2004, 7, 729.
In conclusion, we have reported site-selective Suzuki–
Miyaura reactions of 1,2-dibromo-3,5-difluorobenzene
which provide a convenient approach to difluorinated
ortho-terphenyls and 2-bromo-3,5-difluoro-biphenyls.
The application of the concept outlined herein to other
fluorinated arenes is currently studied in our laboratories.
(7) Reviews: (a) Wittkopp, A.; Schreiner, P. R. The Chemistry
of Dienes and Polyenes, Vol. 2; John Wiley and Sons:
Chichester, 2000. (b) Schreiner, P. R. Chem. Soc. Rev. 2003,
32, 289. See also: (c) Wittkopp, A.; Schreiner, P. R. Chem.
Eur. J. 2003, 9, 407. (d) Kleiner, C. M.; Schreiner, P. R.
Chem. Commun. 2006, 4315. (e) Kotke, M.; Schreiner, P. R.
Synthesis 2007, 779. Review: (f) Tsogoeva, S. B. Eur. J.
Org. Chem. 2007, 1701.
Acknowledgment
Financial support by the DAAD (scholarship for M.S.) and by the
University of Rostock (scholarship of the interdisciplinary faculty
for S.R.) is gratefully acknowledged.
(8) For reviews of cross-coupling reactions of polyhalogenated
heterocycles, see: (a) Schröter, S.; Stock, C.; Bach, T.
Tetrahedron 2005, 61, 2245. (b) Schnürch, M.; Flasik, R.;
Khan, A. F.; Spina, M.; Mihovilovic, M. D.; Stanetty, P. Eur.
J. Org. Chem. 2006, 3283.
(9) (a) Dang, T. T.; Dang, T. T.; Rasool, N.; Villinger, A.;
Langer, P. Adv. Synth. Catal. 2009, 351, 1595. (b) Dang,
T. T.; Dang, T. T.; Ahmad, R.; Reinke, H.; Langer, P.
Tetrahedron Lett. 2008, 49, 1698. (c) Dang, T. T.;Villinger,
A.; Langer, P. Adv. Synth. Catal. 2008, 350, 2109.
References and Notes
(1) (a) Fluorine in Bioorganic Chemistry; Filler, R.; Kobayasi,
Y.; Yagupolskii, L. M., Eds.; Elsevier: Amsterdam, 1993.
(b) Filler, R. Fluorine Containing Drugs in Organofluorine
Chemicals and their Industrial Application; Pergamon: New
York, 1979, Chap. 6. (c) Hudlicky, M. Chemistry of
Organic Compounds; Ellis Horwood: Chichester, 1992.
(d) Kirsch, P. Modern Fluoroorganic Chemistry; VCH:
Weinheim, 2004. (e) Chambers, R. D. Fluorine in Organic
Chemistry; Blackwell Publishing CRC Press: Boca Raton,
2004. See also: (f) Ryckmanns, T.; Balancon, L.; Berton, O.;
Genicot, C.; Lamberty, Y.; Lallemand, B.; Passau, P.; Pirlot,
N.; Quéré, L.; Talaga, P. Bioorg. Med. Chem. Lett. 2002, 12,
261. (g) Malamas, M. S.; Sredy, J.; Moxham, C.; Katz, A.;
Xu, W.; McDevitt, R.; Adebayo, F. O.; Sawicki, D. R.;
Seestaller, L.; Sullivan, D.; Taylor, J. R. J. Med. Chem.
2000, 43, 1293. (h) Ciha, A. J.; Ruminski, P. G. J. Agric.
Food Chem. 1991, 39, 2072. (i) Albrecht, H. A.; Beskid, G.;
Georgopapadakou, N. H.; Keith, D. D.; Konzelmann, F. M.;
Pruess, D. L.; Rossman, P. L.; Wei, C. C.; Christenson, J. G.
J. Med. Chem. 1991, 34, 2857. (j) Albrecht, H. A.; Beskid,
G.; Christenson, J. G.; Deitcher, K. H.; Georgopapadakou,
N. H.; Keith, D. D.; Konzelmann, F. M.; Pruess, D. L.; Wie,
C. C. J. Med. Chem. 1994, 37, 400. (k) Song, C. W.; Lee,
K. Y.; Kim, C. D.; Chang, T.-M.; Chey, W. Y. J. Pharmacol.
Exp. Ther. 1997, 281, 1312. (l) De Voss, J. J.; Sui, Z.;
DeCamp, D. L.; Salto, R.; Babe, L. M.; Craik, C. S.;
Ortiz de Montellano, P. R. J. Med. Chem. 1994, 37, 665.
(m) Anjaiah, S.; Chandrasekhar, S.; Gree, R. Adv. Synth.
Catal. 2004, 346, 1329. (n) Iorio, M. A.; Paszkowska, R. T.;
Frigeni, V. J. Med. Chem. 1987, 30, 1906. (o) Popp, J. L.;
Musza, L. L.; Barrow, C. J.; Rudewicz, P. J.; Houck, D. R.
J. Antibiot. 1994, 47, 411. (p) Chen, T. S.; Petuch, B.;
MacConnell, J.; White, R.; Dezeny, G. J. Antibiot. 1994, 47,
1290. (q) Lam, K. S.; Schroeder, D. R.; Veitch, J. M. J. M.;
Colson, K. L.; Matson, J. A.; Rose, W. C.; Doyle, T. W.;
Forenza, S. J. Antibiot. 2001, 54, 1. (r) Purser, S.; Moore,
P. R.; Swallow, S.; Gouverneur, V. Chem. Soc. Rev. 2008,
37, 320.
(d) Hussain, M.; Dang, T. T.; Langer, P. Synlett 2009, 1822.
(10) Nawaz, M.; Farooq, M. I.; Obaid-Ur-Rahman, A.; Khera, R.
A.; Villinger, A.; Langer, P. Synlett 2010, 150.
(11) General Procedure for Suzuki Reactions
A 1,4-dioxane solution (4 mL per 0.3 mmol of 1) of 1,
Cs2CO3, Pd(PPh3)4, and arylboronic acid 2 was stirred at
90 °C for 6 or 8 h. After cooling to r.t. the organic and the
aqueous layer were separated and the latter was extracted
with CH2Cl2. The combined organic layers were dried
(Na2SO4), filtered, and the filtrate was concentrated in
vacuo. The residue was purified by column chromatography.
(12) 1,2-Di(2-Methoxyphenyl)-3,5-difluorobenzene (3f)
Starting with 1 (100 mg, 0.37 mmol), Cs2CO3 (263 mg, 0.81
mmol), Pd(PPh3)4 (3 mol%), 2-methoxyphenylboronic acid
(123 mg, 0.81 mmol), and 1,4-dioxane (4 mL), 3f was
isolated as a colorless solid (72 mg, 60%), mp 111–113 °C.
1H NMR (300 MHz, CDCl3): d = 3.42 (s, 3 H, OCH3), 3.55
(s, 3 H, OCH3), 6.60 (dd, J = 8.3, 0.7 Hz, 1 H, ArH), 6.67–
6.88 (m, 6 H, ArH), 6.94 (dd, J = 7.5, 1.7 Hz, 1 H, ArH),
7.05–7.12 (m, 2 H, ArH). 13C NMR (62.89 MHz, CDCl3):
d = 54.9 (OCH3), 55.2 (OCH3), 102.6 (t, 2JCF = 26.5 Hz,
CH), 110.2 (CH), 110.3 (CH), 113.2 (dd, JCF = 21.2, 3.5 Hz,
CH), 119.7 (CH), 119.9 (CH), 122.1 (dd, J = 17.1, 3.8 Hz,
C), 123.1 (C), 128.6 (t, J = 2.1 Hz, C), 128.90 (CH), 128.92
(CH), 131.0 (CH), 131.7 (CH), 141.9 (t, J = 4.9 Hz, C),
156.0 (C), 157.0 (C), 160.1 (dd, JCF = 247.2, 12.8 Hz, CF),
161.6 (dd, JCF = 247.2, 13.3 Hz, CF). 19F NMR (282.4 MHz,
CDCl3): d = –112.82 (CF), –118.20 (CF). IR (ATR):
n = 3067 (w), 2956 (w), 2926 (w), 2835 (w), 1616 (w), 1596
(w), 1503 (w), 1494 (w), 1455 (w), 1421 (w), 1338 (w), 1287
(w), 1247 (m), 1201 (w), 1180 (w), 1120 (w), 1089 (w), 1024
(m), 928 (w), 877 (w), 865 (w), 800 (w), 755 (w), 744 (m),
701 (w), 635 (w), 586 (m), 537 (w) cm–1. MS (EI, 70 eV):
m/z (%) = 326 (100) [M]+, 295 (12), 251 (21), 238 (10).
(2) Bégué, J. P.; Bonnet-Delpon, D. J. Fluorine Chem. 2006,
127, 992.
(3) Isanbor, C.; O’Hagan, D. J. Fluorine Chem. 2006, 127, 303.
Synlett 2010, No. 6, 913–916 © Thieme Stuttgart · New York