7
870 Zhang et al.
Asian J. Chem.
REFERENCES
1
2
.
.
G.L. Parrilha, C. Fernandes,A.J. Bortoluzzi, B. Szpoganicz, M.de. S. Silva,
C.T. Pich, H. Terenzi and A. Horn Jr., Inorg. Chem. Commun., 11, 643
(
2008).
V. Subramanian, C. Shankaranarayanan, B.U. Nair, M. Kanthimathi,
R. Manickkavachagam and T. Ramasami, Chem. Phys. Lett., 274, 275
(
1997).
3
4
5
.
.
.
H. Naeimi, F. Salimi and K. Rabiei, J. Mol. Catal. A, 260, 100 (2006).
H. Naeimi and M. Moradian, Polyhedron, 27, 3639 (2008).
A.L. Iglesias, G. Aguirre, R. Somanathan and M. Parra-Hake, Polyhedron,
2
3, 3051 (2004).
6
7
.
.
R.R. Krishnan and S. Vancheesan, J. Mol. Catal. A, 142, 377 (1999).
G. Venkatachalam, N. Raja, D. Pandiarajan and R. Ramesh, Spectrochim.
Acta A, 71, 884 (2008).
8
9
1
.
.
T. Yu, K. Zhang, Y. Zhao, C. Yang, H. Zhang, D. Fan and W. Dong,
Inorg. Chem. Commun., 10, 401 (2007).
S. Mandal, G. Rosair, J. Ribas and D. Bandyopadhyay, Inorg. Chim. Acta,
Temperature (ºC)
Fig. 3. TGA curves of complexes 1 and 2
3
62, 2200 (2009).
0. T.Yu, W. Su, W. Li, Z. Hong, R. Hua, M. Li, B. Chu, B. Li, Z. Zhang and
(
calcd. 10.90 %), which may correspond to the decomposition
of the linker between the benzene and morpholine rings and
the loss of CH and CH CH groups. The next two steps, which
Z.Z. Hu, Inorg. Chim. Acta, 359, 2246 (2006).
11. Q. Hou, L. Zhao, H. Zhang, Y. Wang and S. Jiang, J. Luminesc., 126,
447 (2007).
2
2
1
1
2. G.D. Sharma, S.G. Sandogaker and M.S. Roy, Thin Solid Films, 278,
29 (1996).
3. T. Shiga and H. Oshio, Polyhedron, 26, 1881 (2007).
occurred within the temperature range 450-710 ºC, may involve
the decomposition of the benzene and morpholine rings with
weight loss of 43.01 % (calcd. 43.06 %). The final residue
was calculated to be CuO with found weight loss of 23.66 %
1
14. R.-J. Tao, C.-Z. Mei, S.-Q. Zang, Q.-L. Wang, J.-Y. Niu and D.-Z. Liao,
Inorg. Chim. Acta, 357, 1985 (2004).
1
1
5. L. Salmon, P. Thuéry and M. Ephritikhine, Polyhedron, 23, 623 (2004).
6. G. Ambrosi, M. Formica, V. Fusi, L. Giorgi and M. Micheloni, Coord.
Chem. Rev., 252, 1121 (2008).
(
calcd. 21.12 %).
The TGA curve for complex 2 shows that 2 is stable up to
2
00 ºC. It then decomposed in three steps. The first step in the
temperature range of 200-255 ºC occurred with weight loss of
7.00 % (calcd. 26.45 %), which may be attributed to the loss
of C CH moiety. The second step took place within the
temperature 255-375 ºC with weight loss of 13 % (calcd. 12.47
). This is probably due to the loss of an azide ion. The third
17. P.A. Vigato and S. Tamburini, Coord. Chem. Rev., 248, 1717 (2004).
18. P. Guerriero, S. Tamburini and P.A. Vigato, Coord. Chem. Rev., 139, 17
(
1995).
2
1
9. P.S. Mukherjee, S. Dalai, G. Mostafa, T.-H. Lu, E. Rentschler and N.R.
6
H
4
Chaudhuri, New J. Chem., 25, 1203 (2001).
20. S. Sasmal, S. Sarkar, N. Aliaga-Alcalde and S. Mohanta, Inorg. Chem.,
50, 5687 (2011).
2
2
%
1. G.M. Sheldrick, Acta Crystallogr., A64, 112 (2008).
2. A.W. Addison, T.N. Rao, J. Reedijk, J. van Rijn and G.C. Vershoor, J.
Chem. Soc., Dalton Trans., 1349 (1984).
step, which occurred in the temperature range 375-475 ºC,
may involve the loss of N-(2-aminoethyl)piperidine moiety
[C
5
H
10N(CH
2
2
) N] with observed weight loss of 37.77 % (calcd.
23. T. Rojo, M.I.Arriortua, J. Ruiz, J. Darriet, G.Villeneuve and D. Beltran-
3
7.46 %). The final residue was calculated to be CuO with
Porter, J. Chem. Soc. Dalton Trans., 285 (1987).
4. R. Li, B. Moubaraki, K.S. Murray and S. Brooker, J. Chem. Soc. Dalton
Trans., 6014 (2008).
2
found weight loss of 22.23 % (calcd. 23.61 %).
Conclusion
25. R. Li, P. Zhao, G. Tang and X. Tang, Acta Crystallogr., C64, m339 (2008).
6. R. Li, B. Moubaraki, K.S. Murray and S. Brooker, Eur. J. Inorg. Chem.,
851 (2009).
2
Two copper(II) complexes of phenol-containing tridentate
Schiff base ligands (L ) and (L ) in the forms of [CuL (µ-Br)]
2
1
–
2
–
1
∞
27. S.J. Brown, X. Tao, T.A. Wark, D.W. Stephan and P.K. Mascharak,
2
(
1) and [CuL (µ1,3-N
3
)]
∞
(2) have been synthesized and charac-
Inorg. Chem., 27, 1581 (1988).
2
2
8. R. Cortés, L. Lezama, J.I.R. de Larramendi, G. Madariaga, J.L. Mesa,
F.J. Zuñiga and T. Rojo, Inorg. Chem., 34, 778 (1995).
9. S. Naiya, C. Biswas, M.G.B. Drew, C.J. Gómez-García, J.M. Clemente-
Juan and A. Ghosh, Inorg. Chem., 49, 6616 (2010).
terized. Single crystal X-ray structure determinations carried
out on 1 and 2 reveal that both complexes are mono(µ-bromo)-
bridged (for 1) or mono(µ1,3-azido)-bridged (for 2) square
pyramidal copper(II) one-dimensional chain polymeric comp-
lexes. Thermogravimetric analysis results show that complex
30. M. He, W. Zhang and Z. Yu, Inorg. Chim. Acta, 363, 3619 (2010).
3
3
3
1. A. Pajunen and S. Pajunen, Acta Chem. Scand., A40, 413 (1986).
2. Z.-L. You, X.-L. Ma and S.-Y. Niu, J. Coord. Chem., 61, 3297 (2008).
3. P. Hou, Z.-L. You, L. Zhang, X.-L. Ma and L.-L. Ni, Transtion Met.
Chem., 33, 1013 (2008).
2
is more stable than complex 1.
ACKNOWLEDGEMENTS
The authors acknowledged the financial support for this
3
4. C.-Y. Wang, J.-Y.Ye, C.-Y. Lv, W.-Z. Lan and J.-B. Zhou, J. Coord. Chem.,
6
2, 2164 (2009).
work by the Scientific Research Foundation for the Returned
Overseas Chinese Scholars, State Education Ministry, Huai'an
Industry-University-Institute Cooperation Foundation
(HAC201014) and Jiangsu Key Laboratory for the Chemistry
of Low-Dimensional Materials (JSKC12108).