Inorganic Chemistry
Article
and the outer one, a 20 mL scintillation vial, containing stopcock
(13) Umehara, K.; Kuwata, S.; Ikariya, T. J. Am. Chem. Soc. 2013, 135,
6754−6757.
grease, which slowly absorbs solvent (acting as a “solvent sponge”)
1
from the inner tube by vapor transport. Yield: quantitative. H NMR
(14) Bianchini, C.; Masi, D.; Linn, K.; Mealli, C.; Peruzzini, M.;
Zanobini, F. Inorg. Chem. 1992, 31, 4036−4037.
(15) Adams, J. J.; Gruver, B. C.; Donohoue, R.; Arulsamy, N.;
Roddick, D. M. Dalton Trans. 2012, 41, 12601−12611.
(16) Ara, I.; Aranaz, J.; Fornies, J. J. Fluorine Chem. 2010, 131, 1103−
1107.
(400 MHz, CD2Cl2 298 K), δ(ppm) full width at half height (Hz):
70.7(2H, 500 Hz), 32.9(2H, 750 Hz), −2.22(18H, 450 Hz); the
remaining two resonances belonging to the ligand could not be located
and are assumed to be too paramagnetically broadened to be detected.
MS (ESI positive ion, CH2Cl2): m/z, 869.2 [(L)2Co2Cl3]+ (C38H50
35Cl3Co2N10), 834 [(L)Co2Cl2]+ (C38H5035Cl2Co2N10). Also observed
were heavier chlorine isotopomers of the given ion with appropriate
relative intensities.
[Cu(btzp)Cl2]2·CuCl2. Ligand btzp (6 mg, 22.45 μmol) was
dissolved in 5 mL of acetonitrile and added to a stirring mixture of
anhydrous CuCl2 (4.53 mg, 33.68 μmol) and 5 mL of acetonitrile. The
mixture was stirred for 3 h and filtered with a medium glass frit. The
solvent was removed in vacuum to reveal a dark red-orange solid.
Yield: quantitative. Dark red-orange crystals were grown by slow
evaporation in acetonitrile. 1H NMR (400 MHz, CD3CN 298 K): 7.89
(b, 6H) 11.90 (b, 2 H, C−H Ar) 50.00 (b, 1H, C−H Ar). MS (ESI
positive ion, MeCN) m/z: obsd, 597.1276, calcd, 597.1258 for
(btzp)2Cu+ (C22H18N1863Cu).
(17) Page, M. J.; Wagler, J.; Messerle, B. A. Organometallics 2010, 29,
3790−3798.
(18) Dahlenburg, L.; Menzel, R.; Puchta, R.; Heinemann, F. W. Inorg.
Chim. Acta 2008, 361, 2623−2630.
(19) Braunstein, P.; Kelly, D. G.; Dusausoy, Y.; Bayeul, D.;
Lanfranchi, M.; Tiripicchio, A. Inorg. Chem. 1994, 33, 233−242.
(20) Liston, D. J.; Lee, Y. J.; Scheidt, W. R.; Reed, C. A. J. Am. Chem.
Soc. 1989, 111, 6643−6648.
(21) Davis, K. B.; Harris, T. D.; Castellani, M. P.; Golen, J. A.;
Rheingold, A. L. Organometallics 2007, 26, 4843−4845.
(22) Szymczak, N. K.; Han, F.; Tyler, D. R. Dalton Trans. 2004,
3941−3942.
(23) Higgins, S. J.; La Pensee, A.; Stuart, C. A.; Charnock, J. M. J.
Chem. Soc., Dalton Trans. 2001, 902−910.
(24) Higgins, S. J.; Stuart, C. A.; Mills, A. Inorg. Chem. Commun.
2000, 3, 208−210.
ASSOCIATED CONTENT
■
S
* Supporting Information
(25) Sudfeld, M.; Sheldrick, W. S. Inorg. Chim. Acta 2000, 304, 78−
Full crystallographic and ligand synthesis details. This material
86.
(26) Carmona, D.; Viguri, F.; Lahoz, F. J.; Oro, L. A. Inorg. Chem.
2002, 41, 2385−2388.
(27) Kostakis, G. E.; Ako, A. M.; Powell, A. K. Chem. Soc. Rev. 2010,
39, 2238−2271.
AUTHOR INFORMATION
■
Corresponding Author
(28) Miyasaka, H.; Saitoh, A.; Abe, S. Coord. Chem. Rev. 2007, 251,
2622−2664.
(29) Miyasaka, H.; Yamashita, M. Dalton Trans. 2007, 399−406.
(30) Stamatatos, T. C.; Efthymiou, C. G.; Stoumpos, C. C.; Perlepes,
S. P. Eur. J. Inorg. Chem. 2009, 3361−3391.
Notes
The authors declare no competing financial interest.
(31) Tretyakov, E. V.; Tolstikov, S. E.; Suvorova, A. O.; Polushkin, A.
V.; Romanenko, G. V.; Bogomyakov, A. S.; Veber, S. L.; Fedin, M. V.;
Stass, D. V.; Reijerse, E.; Lubitz, W.; Zueva, E. M.; Ovcharenko, V. I.
Inorg. Chem. 2012, 51, 9385−9394.
(32) Chen, J.; Lee, Y.-M.; Davis, K. M.; Wu, X.; Seo, M. S.; Cho, K.-
B.; Yoon, H.; Park, Y. J.; Fukuzumi, S.; Pushkar, Y. N.; Nam, W. J. Am.
Chem. Soc. 2013, 135, 6388−6391.
(33) Kundu, S.; Miceli, E.; Farquhar, E.; Pfaff, F. F.; Kuhlmann, U.;
Hildebrandt, P.; Braun, B.; Greco, C.; Ray, K. J. Am. Chem. Soc. 2012,
134, 14710−14713.
ACKNOWLEDGMENTS
■
This work was supported by the Indiana University Office of
Vice President for Research. ChemMatCARS Sector 15 is
principally supported by the National Science Foundation/
Department of Energy under grant no. NSF/CHE-0822838.
Use of the Advanced Photon Source was supported by the U.S.
Department of Energy, Office of Science, Office of Basic Energy
Sciences, under contract no. DE-AC02-06CH11357.
(34) Yi, X.-Y.; Lam, T. C. H.; Sau, Y.-K.; Zhang, Q.-F.; Williams, I.
D.; Leung, W.-H. Inorg. Chem. 2007, 46, 7193−7198.
(35) Bowmaker, G. A.; Healy, P. C.; Kepert, D. L.; Kildea, J. D.;
Skelton, B. W.; White, A. H. J. Chem. Soc., Dalton Trans. 1989, 1639−
1644.
(36) Healy, P. C.; McMurtrie, J. C.; Bouzaid, J. Acta Crystallogr., Sect.
E: Struct. Rep. Online 2010, 66, m493−m494.
(37) Machura, B.; Switlicka, A.; Nawrot, L.; Mrozinski, J.; Kruszynski,
R.; Kusz, J. J. Solid State Chem. 2010, 183, 2012−2020.
(38) Benson, C. R.; Hui, A. K.; Parimal, K.; Cook, B. J.; Chen, C.-H.;
Lord, R. L.; Flood, A. H.; Caulton, K. G. Dalton Trans. 2014, DOI:
10.1039/C1034DT00341A.
REFERENCES
■
(1) Caulton, K. G. New J. Chem. 1994, 18, 25−41.
(2) Gade, L. H. Eur. J. Inorg. Chem. 2002, 1257−1268.
(3) Meyer, G. Angew. Chem., Int. Ed. Engl. 2010, 49, 3116−3118.
(4) Mulvey, R. E.; Mongin, F.; Uchiyama, M.; Kondo, Y. Angew.
Chem., Int. Ed. 2007, 46, 3802−3824.
(5) Halcrow, M. A. Coord. Chem. Rev. 2005, 249, 2880−2908.
(6) Taghizadeh, G. L.; Farsadpour, S.; Sun, Y.; Thiel, W. R. Eur. J.
Inorg. Chem. 2011, 2011, 3431−3437.
(7) Wan, L.; Zhang, C.; Xing, Y.; Li, Z.; Xing, N.; Wan, L.; Shan, H.
Inorg. Chem. 2012, 51, 6517−6528.
(8) Yoshinari, A.; Tazawa, A.; Kuwata, S.; Ikariya, T. Chem.Asian J.
2012, 7, 1417−1425.
(9) Gamez, P.; Steensma, R. H.; Driessen, W. L.; Reedijk, J. Inorg.
Chim. Acta 2002, 333, 51−56.
(10) Miao, L.-L.; Li, H.-X.; Yu, M.; Zhao, W.; Gong, W.-J.; Gao, J.;
Ren, Z.-G.; Wang, H.-F.; Lang, J.-P. Dalton Trans. 2012, 41, 3424−
3430.
(11) Dong, G.; Matthews, J. P.; Craig, D. C.; Baker, A. T. Inorg. Chim.
Acta 2002, 284, 266−272.
(12) Scicluna, T. R.; Fraser, B. H.; Gorham, N. T.; MacLellan, J. G.;
Massi, M.; Skelton, B. W.; St. Pierre, T. G.; Woodward, R. C.
CrystEngComm 2010, 12, 3422−3424.
3310
dx.doi.org/10.1021/ic402107z | Inorg. Chem. 2014, 53, 3307−3310