Journal of the American Chemical Society
Page 4 of 5
completion in less than 3 hrs and there seemed no obvious
Experimental details, characterization of new compounds
1
2
3
4
5
6
7
8
diacid effect at this stage. The resulted mixture was then
treated with either water or sat. NH4Cl aqueous solution, and
in both case, notable stereoeffect was observed with the di-
carboxylic acid showing significantly better enantioselectivity
than mono acid and only 9% ee in the absence of weak acid,
consistent with those observed under catalytic conditions
(Scheme 3, eq. 1).11 In addition, no enantio-enrichment or
deracemization was observed when rac-4a or (S)-4a was sub-
jected to the catalytic conditions (Scheme 3, eq. 2). Taken
together, these results verified that enamine-protonation was
the stereogenerating step in the reaction sequence and that
weak acid was directly involved in this key step. The plausi-
ble mode of weak acid participation is a proton shuttle as
illustrated in TS 5-7 (Scheme 2).8h Besides providing a favor-
able acid/base buffer media to suppress side reactions, the
stereocontrol effect of dicarboxylic acid might also be under-
stood by considering the known recognition effect between
diamine and diacid.12 The observed geometry effect of diacid
is in line with this notion (Table 1, entries 11-13).
and computational studies. This material is available free of
AUTHOR INFORMATION
Corresponding Author
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENT
The project was supported by Ministry of Science and Tech-
nology (2012CB821600), the Natural Science Foundation of
China (NSFC 21390400, 21572232 and 21521002), and the Chi-
nese Academy of Sciences.
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
REFERENCES
(1) For selected reviews, see: (a) Breslow, R. Acc. Chem. Res. 1995, 28,
146. (b) Kirby, A. J. Angew. Chem. Int. Ed. 1996, 35, 706. (c) Marchetti,
L.; Levine, M. ACS Catal. 2011, 1, 1090. (d) Bernardi, L.; Fochi, M.;
Franchini, M. C.; Ricci, A. Org. Biomol. Chem. 2012, 10, 2911.
(2) (a) Siirola, E.; Frank, A.; Grogan, G.; Kroutil, W. Adv. Synth. Catal.
2013, 355, 1677. (b) Grogan, G. Biochem. J. 2005, 388, 721.
(3) (a) Leonard, P. M.; Grogan, G. J. Biol. Chem. 2004, 279, 31312. (b)
Grogan, G.; Graf, J.; Jones, A.; Parsons, S.; Turner, N. J.; Flitsch, S. L.
Angew. Chem. Int. Ed. 2001, 40, 1111.
(4) (a) Kawata, A.; Takata, K.; Kuninobu, Y.; Takai, K. Angew. Chem.
Int. Ed. 2007, 46, 7793. (b) Grenning, A. J.; Tunge, J. A. J. Am. Chem.
Soc. 2011, 133, 14785. (c) Grenning, A. J.; Van Allen, C. K.; Maji, T.;
Lang, S. B.; Tunge, J. A. J. Org. Chem. 2013, 78, 7281. (d) Maji, T.;
Ramakumar, K.; Tunge, J. A. Chem. Commun. 2014, 50, 14045. (e)
Roudier, M.; Constantieux, T.; Quintard, A.; Rodriguez, J. Org. Lett.
2014, 16, 2802.
Scheme 3. Control Experiments
(5) (a) Zhang, L.; Fu, N.; Luo, S. Acc. Chem. Res. 2015, 48, 986. (b) Xu,
C.; Zhang, L.; Luo, S. J. Org. Chem. 2014, 79, 11517.
(6) For selected examples, see: (a) Alden-Danforth, E.; Scerba, M. T.;
Lectka, T. Org. Lett. 2008, 10, 4951. (b) Luan, Y.; Schaus, S. E. J. Am.
Chem. Soc. 2012, 134, 19965. (c) Izquierdo, J.; Orue, A.; Scheidt, K. A. J.
Am. Chem. Soc. 2013, 135, 10634. (d) El-Sepelgy, O.; Haseloff, S.;
Alamsetti, S. K.; Schneider, C. Angew. Chem. Int. Ed. 2014, 53, 7923.
(e) Zhao, W.; Wang, Z.; Chu, B.; Sun, J. Angew. Chem. Int. Ed. 2015,
54, 1910. (f) Hsiao, C.-C.; Liao, H.-H.; Rueping, M. Angew. Chem. Int.
Ed. 2014, 53, 13258. (g) Huang, Y.; Hayashi, T. J. Am. Chem. Soc. 2015,
137, 7556.
(7) For selected reviews on o-QMs, see: (a) Singh, M. S.; Nagaraju, A.;
Anand, N.; Chowdhury, S. RSC Adv. 2014, 4, 55924. (b) Bai, W.-J.;
David, J. G.; Feng, Z.-G.; Weaver, M. G.; Wu, K.-L.; Pettus, T. R. R.
Acc. Chem. Res. 2014, 47, 3655. (c) Pathak, T. P.; Sigman, M. S. J. Org.
To further demonstrate the utility of this new asymmetric
retro-Claisen reaction of β-diketones, 4a was subjected to a
Baeyer-Villiger oxidation reaction followed by hydrolysis
using KOH to generate diol 5.13 Then intramolecular
Mitsunobu reaction gave the dihydrobenzofuran 6 (Scheme
4), a class of heterocycles presented in many natural prod-
ucts and biologically active compounds.14
Scheme 4. Synthetic Transformations
Chem. 2011, 76, 9210. (d) Willis, N. J.; Bray, C. D. Chem.―Eur. J. 2012,
18, 9160.
OH
O
OAc
PPh3, DIAD
HO
1) m-CPBA, DCM
(8) For reviews, see: (a) Oudeyer, S.; Brière, J.-F.; Levacher, V. Eur. J.
Org. Chem. 2014, 2014, 6103. For selected examples, see: (b) Mohr, J.
T.; Hong, A. Y.; Stoltz, B. M. Nat. Chem. 2009, 1, 359. (c) Uraguchi, D.;
Kinoshita, N.; Ooi, T. J. Am. Chem. Soc. 2010, 132, 12240. (d) Cheon, C.
H.; Kanno, O.; Toste, F. D. J. Am. Chem. Soc. 2011, 133, 13248. (e)
Kieffer, M. E.; Repka, L. M.; Reisman, S. E. J. Am. Chem. Soc. 2012, 134,
5131. (f) Yamamoto, E.; Gokuden, D.; Nagai, A.; Kamachi, T.; Yoshi-
zawa, K.; Hamasaki, A.; Ishida, T.; Tokunaga, M. Org. Lett. 2012, 14,
6178. (g) Guin, J.; Varseev, G.; List, B. J. Am. Chem. Soc. 2013, 135, 2100.
THF, 0 oC–rt
O
2) KOH, MeOH
5 92% yield
6 60%, 94% ee
4a 95% ee
In summary, we have developed an enamine strategy for
asymmetric retro-Claisen C-C bond cleavage of β-diketones
by merging chiral primary amine catalysis and Lewis base
activation. The salient features include the highly stereose-
lective C-C coupling between enamine and ortho-quinone
methide, as well as the enamine-mediated C-C cleavage and
the highly stereospecific enamine protonation. This retro-
Claisen protocol provides accesses to chiral α-tertiary ke-
tones and chiral macrolides that are difficult to synthesize
otherwise. Further development of enamine-based Claisen
reactions is underway in our laboratory.
(h) Fu, N.; Zhang, L.; Luo, S.; Cheng, J.-P. Chem.―Eur. J. 2013, 19,
15669. (i) Wang, M. H.; Cohen, D. T.; Schwamb, C. B.; Mishra, R. K.;
Scheidt, K. A. J. Am. Chem. Soc. 2015, 137, 5891.
(9) Most acetoacetone (>75%) was recovered.
(10) Frisch, M. J. et al. Gaussian 09, revision A.01; Gaussian, Inc.:
Wallingford, CT, 2009. (See SI for full citations).
(11) The low enantioselectivity may be rationalized by the enhanced
iminium hydrolysis under stoichiometric conditions. Efforts to char-
acterize the in-situ generated intermediates (e.g. int3, int5, Scheme
2) have been in vain due to the heterogeneous nature of the reaction.
(12) Periasamy, M.; Sivakumar, S.; Reddy, M. N.; Padmaja, M. Org.
Lett. 2004, 6, 265.
ASSOCIATED CONTENT
Supporting Information
ACS Paragon Plus Environment