546
S. Gourdain et al.
Vaccinia virus deoxyuridine triphosphatase expressed in Escherichia coli. J. Biol. Chem. 1996, 271,
23506–23511.
2. For the most recent studies see: a) Wang–Gillam, A.; Pastuszak, I.; Stewart, M.; Drake, R.R.; Elbein,
A.D. Identification and modification of the uridine-binding site of the UDP-GalNAc (GlcNAc) py-
rophosphorylase. J. Biol. Chem. 2000, 275, 1433–1438. b) Schimoler-O’Rourke, R.; Renault, S.; Mo, W.;
Selitrennikoff, C.P. Neurospora crassa FKS protein binds to the (1,3)β-glucan synthase substrate, UDP-
glucose. Curr. Microbiol. 2003, 46, 408–412. c) Banerjee, R.; Pennington, M.W.; Garza, A.; Owens, I.S.
Mapping the UDP-glucuronic acid binding site in UDP-glucuronosyltransferase-1A10 by homology-
based modeling: Confirmation with biochemical evidence. Biochemistry 2008, 47, 7385–7392.
3. Gourdain, S.; Martinez, A.; Petermann, C.; Harakat, D.; Clivio, P. Unraveling the photochemistry of
the 5-azido-2ꢁ-deoxyuridine photoaffinity label. J. Org. Chem. 2009, 74, 6885–6887.
4. Compound 2 can be prepared in 90% yield from 2ꢁ-deoxyuridine (3):Kumar, R.; Wiebe, L.I.; Knaus,
E.E. A mild and efficient methodology for the synthesis of 5-halogeno uracil nucleosides that occurs
via a 5-halogeno-6-azido-5,6-dihydro intermediate. Can. J. Chem. 1994, 72, 2005–2010.
5. Rechtin, T.M.; Black, M.E.; Mao, F.; Lewis, M.L.; Drake, R.R. Purification and photoaffinity labeling
of Herpes Simplex Virus type-1 thymidine kinase. J. Biol. Chem. 1995, 270, 7055–7060.
6. Salic, A.; Mitchison, T.J. A chemical method for fast and sensitive detection of DNA synthesis in vivo.
Proc. Natl. Acad. Sci. USA 2008, 105, 2415–2420.
7. Evans, R., K.; Haley, B.E. Synthesis and biological properties of 5-azido-2ꢁ-deoxyuridine 5ꢁ-
triphosphate, a photoactive nucleotide suitable for making light-sensitive DNA. Biochemistry 1987,
26, 269–276.
8. Sunthankar, P.; Pastuszak, I.; Rooke, A.; Elbein, A.D.; van de Rijn, I.; Canfield, W.M.; Drake,
R.R. Synthesis of 5-azido-UDP-N -acetylhexosamine photoaffinity analogs and radiolabeled UDP-
N-acetylhexosamines. Anal. Biochem. 1998, 258, 195–201.
9. a) Roberts, M.; Visser, D.W. Uridine and cytidine derivatives. J. Am. Chem. Soc. 1952, 74, 668–669.
b) Shen, T.Y.; McPherson, J.F.; Linn, B.O. Nucleosides. III. Studies on 5-methylamino-2ꢁ-deoxyuridine
as a specific antiherpes agent. J. Med. Chem. 1966, 9, 366–369. c) Barawkar, D.A.; Kumar, R.K.;
Ganesh, K.N. Effect of C5-amino substituent on 2ꢁ-deoxyuridine base pairing with 2ꢁ-deoxyadenosine:
Inverstigation by 1H and 13C NMR spectroscopy. Tetrahedron 1992, 48, 8505–8514. d) Barawkar, D.A.;
Ganesh, K.N. Solid phase synthesis of DNA containing 5-NH2–2ꢁ-deoxyuridine. Bioorg. Med. Chem. Lett.
1993, 3, 347–352. e) Ferrer, E.; Neubauer, G.; Mann, M.; Eritja, R. Synthesis of oligodeoxynucleotides
containing 5-aminouracil and its N -acetyl derivative. J. Chem. Soc. Perkin Trans. I 1997, 2051–2057.
f) Storek, M.J.; Suciu, A.; Verdine, G.L. 5-Amino-2ꢁ-deoxyuridine, a novel thymidine analogue for
high-resolution footprinting of protein-DNA complexes. Org. Lett. 2002, 4, 3867–3869.
10. a) Gaulon, C.; Dijkstra, H.P.; Springer, C.J. A general and facile route to new trisubstituted purin-
8-ones. Synthesis 2005, 2227–2233. b) Fang, W.-P.; Cheng, Y.-T.; Cheng, Y.-R.; Cherng, Y.-J. Synthesis
of substituted uracils by the reactions of halouracils with selenium, sulfur, oxygen and nitrogen
nucleophiles under focused microwave irradiation. Tetrahedron 2005, 61, 3107–3113. c) Novikov,
M.S.; Ozerov, A.A. Synthesis of 5-(arylamino)-1-benzyluracils. Chem. Het. Comp. 2005, 41, 766–770.
d) Zhang, L.; Zhang, Y.J. Microwave-assisted synthesis of 8-mercapto-3-methyl-7-alkylxanthines-an
improved method. Tetrahedron Lett. 2006, 47, 775–778.
11. Shreder, K.R.; Wong, M.S.; Nomanbhoy, T.; Leventhal, P.S.; Fuller, S.R. Synthesis of AX7593, a
quinazoline-derived photoaffinity probe for AGFR. Org. Lett. 2004, 6, 3715–3718.