Communication
RSC Advances
25
due to the Pt catalyst surface atomic conguration (ESI†). By
comparison, the current density of Pt black without peak
probably because the carbon may wrap around Pt to reduce the
3 C. Koenigsmann and S. S. Wong, Energy Environ. Sci., 2011, 4,
1161–1176.
4 P. Ferrin and M. Mavrikakis, J. Am. Chem. Soc., 2009, 131,
14381–14389.
5 K. Yamamoto, T. Imaoka, W. J. Chun, O. Enoki, H. Katoh,
M. Takenaga and A. Sonoi, Nat. Chem., 2009, 1, 397–402.
6 M. C. Tsai, T. K. Yeh and C. H. Tsai, Int. J. Hydrogen Energy,
2011, 36, 8261–8266.
26
effective surface planes. Due to the high surface area carbon
used as the support for Pt black, a wider double layer (D.L.)
region can be seem of Pt black in Fig. 3. The electrochemical
characteristics of specic activity (SA) derived from the Had area
À2
À2
of ECSA listed in Table 1, are 9.036 mA cm and 0.857 mA cm
for Pt-NR and Pt black, respectively. The catalyst specic activity
SA) of Pt-NR is 10.54 times better than that of a commercial Pt
7 M. C. Tsai, T. K. Yeh, C. Y. Chen and C. H. Tsai, Electrochem.
Commun., 2007, 9, 2299–2303.
(
black. We herein suggest the Pt(110) rich of Pt-NR enhanced the
electrocatalytic activity.
8 E. Herrero, K. Franaszczuk and A. Wieckowski, J. Phys.
Chem., 1994, 98, 5074–5083.
To investigate the effect of Pt loading on the efficiency of
methanol oxidation, we calculated the associated MA and SA
9 N. Tian, Z. Y. Zhou, S. G. Sun, Y. Ding and Z. L. Wang,
Science, 2007, 316, 732–735.
values (also listed in Table 1). For Pt-NR, which has less loading 10 Y. J. Song, S. B. Han and K. W. Park, Mater. Lett., 2010, 64,
À1
mass, the MA value is 4.59 times higher (354.5 mA mg ) than
1981–1984.
À1
that for Pt black (77.1 mA mg ), the SA value is 10.54 times 11 J. Y. Chen, T. Herricks, M. Geissler and Y. N. Xia, J. Am.
higher (9.036 mA cm ) than that for Pt black (0.857 mA cm ),
À2
À2
Chem. Soc., 2004, 126, 10854–10855.
indicating that our prepared single-crystal, fern-like Pt-NR 12 Y. Song, R. M. Garcia, R. M. Dorin, H. R. Wang, Y. Qiu,
exhibits superior electrocatalytic activity for methanol oxida-
tion. These results suggest the benet of the PPE technique for
the preparation of single-crystal Pt catalysts.
E. N. Coker, W. A. Steen, J. E. Miller and J. A. Shelnutt,
Nano Lett., 2007, 7, 3650–3655.
13 S. Sun, D. Yang, G. Zhang, E. Sacher and J. P. Dodelet, Chem.
Mater., 2007, 19, 6376–6378.
1
4 S. H. Sun, G. X. Zhang, D. S. Geng, Y. G. Chen, M. N. Banis,
R. Y. Li, M. Cai and X. L. Sun, Chem.–Eur. J., 2010, 16, 829–
Conclusions
8
35.
We synthesized single-crystal, fern-like Pt nanorods on the
surface of carbon paper by a pulse-mode potentiostatic elec-
trodeposition technique without use of either surfactant or
template. Compared with a commercial Pt-black catalyst, the
prepared Pt nanorods exhibit denitely improved electro-
catalytic activity (4.59 times better mass activity, and 10.54
times better specic activity) for methanol oxidation. More
detailed electrochemical and physical characterizations of the
prepared nanorods are in progress, with the purpose of opti-
mizing their use as electrodes in PEM-based fuel cells and other
electrochemical applications.
1
1
1
1
1
2
5 D. Dobos, Electrochemical Data:
Electrochemists in Industry and Universities, Elsevier, 1975.
6 M. C. Tsai, T. K. Yeh, Z. Y. Juang and C. H. Tsai, Carbon,
A
Handbook for
2
007, 45, 383–389.
7 V. I. Birss, M. Chang and J. Segal, J. Electroanal. Chem., 1993,
55, 181–191.
3
8 G. Jerkiewicz, G. Vatankhah, J. Lessard, M. P. Soriaga and
Y. S. Park, Electrochim. Acta, 2004, 49, 1451–1459.
9 K. A. Friedrich, K. P. Geyzers, A. J. Dickinson and
U. Stimming, J. Electroanal. Chem., 2002, 524, 261–272.
0 H. S. Liu, C. J. Song, L. Zhang, J. J. Zhang, H. J. Wang and
D. P. Wilkinson, J. Power Sources, 2006, 155, 95–110.
1 B. E. Conway, J. Electroanal. Chem., 2002, 524, 4–19.
2 G. Q. Lu, A. Crown and A. Wieckowski, J. Phys. Chem. B, 1999,
Acknowledgements
2
2
This study was supported nancially by the National Science
Council of Taiwan under grant NSC 100-2623-E-007-010-ET.
103, 9700–9711.
2
2
3 N. Furuya and S. Koide, Surf. Sci., 1989, 220, 18–28.
4 J. Solla-Gullon, F. J. Vidal-Iglesias, A. Lopez-Cudero,
E. Garnier, J. M. Feliu and A. Aldaza, Phys. Chem. Chem.
Phys., 2008, 10, 3689–3698.
5 M. Hepel, I. Dela, T. Hepel, J. Luo and C. J. Zhong,
Electrochim. Acta, 2007, 52, 5529–5547.
Notes and references
1
Z. Y. Zhou, N. Tian, Z. Z. Huang, D. J. Chen and S. G. Sun,
Faraday Discuss., 2008, 140, 81–92.
2
2
C. K. Hsieh, M. C. Tsai, C. Y. Su, S. Y. Wei, M. Y. Yen,
C. C. M. Ma, F. R. Chen and C. H. Tsai, Chem. Commun.,
2
6 J. Xie, X. G. Yang, B. H. Han, Y. Shao-Horn and D. W. Wang,
ACS Nano, 2013, 7, 6337–6345.
2011, 47, 11528–11530.
This journal is © The Royal Society of Chemistry 2014
RSC Adv., 2014, 4, 31424–31427 | 31427