10.1002/anie.201803393
Angewandte Chemie International Edition
COMMUNICATION
Hinokuma, H. Fujii, M. Okamoto, K. Ikeue, M. Machida, Chem Mater 2010,
22, 6183-6190; e) T. P. Senftle, A. C. T. van Duin, M. J. Janik, ACS Catal.
2017, 7, 327-332.
designed and synthesized for the first time and used for methane
total combustion. The catalyst showed outstanding catalytic per-
formance for methane combustion because of the shielding ef-
fect of SiO2 shell, which prevented the sintering of active phases,
and the strong Pd-CeO2 interaction. In addition, the Pd-Ce-Ox
cores remained isolated even after reacting for 50 hours at 800
C. Pd-CeNW@SiO2 also showed superior water vapor and SO2
tolerance. These results give it potential for natural gas vehicle
and power station emissions control. The synthesis strategy de-
veloped in this work should encourage the development of many
high-performance catalysts under harsh conditions (e.g., vehicle
emissions control, reforming, and water gas shift reaction).
[7] a) M. D. Krcha, A. D. Mayernick, M. J. Janik, J Catal 2012, 293, 103-115;
b) S. Colussi, A. Gayen, M. Farnesi Camellone, M. Boaro, J. Llorca, S.
Fabris, A. Trovarelli, Angewandte Chemie 2009, 48, 8481-8484; c) R. V.
Gulyaev, T. Y. Kardash, S. E. Malykhin, O. A. Stonkus, A. S. Ivanova, A. I.
Boronin, Phys Chem Chem Phys 2014, 16, 13523-13539; d) L. S. Kibis,
T. Y. Kardash, E. A. Derevyannikova, O. A. Stonkus, E. M. Slavinskaya, V.
A. Svetlichnyi, A. I. Boronin, J Phys Chem C 2017, 121, 26925-26938.
[8] Y. Q. Su, I. A. W. Filot, J. X. Liu, E. J. M. Hensen, ACS Catal. 2018, 8, 75-
80.
[9] a) Z. Shang, X. Liang, Nano Lett. 2017, 17, 104-109; b) X. Wang, D. Liu,
J. Li, J. Zhen, F. Wang, H. Zhang, Chem. Sci. 2015, 6, 2877-2884; c) Y.
Wang, J. Liu, P. Wang, C. J. Werth, T. J. Strathmann, ACS Catal. 2014, 4,
3551-3559; d) Z. Zhang, S. Zhang, Q. Yao, X. Chen, Z. H. Lu, Inorg Chem
2017, 56, 11938-11945; e) S. Cao, J. Chang, L. Fang, L. Wu, Chem Mater
2016, 28, 5596-5600; f) E. D. Goodman, J. A. Schwalbe, M. Cargnello,
ACS Catal. 2017, 7, 7156-7173.
Acknowledgements
[10] S. Xie, Y. Liu, J. Deng, X. Zhao, J. Yang, K. Zhang, Z. Han, H. Dai, J Catal
2016, 342, 17-26.
[11] a) Q. Dai, S. Bai, Y. Lou, X. Wang, Y. Guo, G. Lu, Nanoscale 2016, 8,
9621-9628; b) A. Satsuma, K. Osaki, M. Yanagihara, J. Ohyama, K.
Shimizu, Catal Today 2015, 258, 83-89.
[12] a) C. Wang, C. Wen, J. Lauterbach, E. Sasmaz, Appl Catal B 2017, 206,
1-8; b) X. Feng, W. Li, D. Liu, Z. Zhang, Y. Duan, Y. Zhang, Small 2017,
13, 1700941; c) H. Tan, J. Wang, S. Yu, K. Zhou, Environ Sci Technol
2015, 49, 8675-8682.
[13] X. Weng, P. Sun, Y. Long, Q. Meng, Z. Wu, Environ Sci Technol 2017, 51,
8057-8066.
[14] F. Yu, X. Xu, H. Peng, H. Yu, Y. Dai, W. Liu, J. Ying, Q. Sun, X. Wang, Appl
Catal A 2015, 507, 109-118.
This work is supported by the National Key R&D Program of
China (2016YFC0205900), the National Natural Science
Foundation of China (21503106, 21567016 and 21773106), the
Natural
Science
Foundation
of
Jiangxi
Province
(20171BCB23016 and 20171BAB203024), and the Foundation
of State Key Laboratory of Coal Clean Utilization and Ecological
Chemical Engineering (Grant No. 2016-15). The authors
gratefully acknowledge Dr. Yuan Wang from the University of
New South Wales and Duanjian Tao from the Jiangxi Normal
University for their constructive suggestions during revising this
manuscript.
[15] F. Arosio, S. Colussi, A. Trovarelli, G. Groppi, Appl Catal B 2008, 80, 335-
342.
Keywords: solid solutions • core-shell • CH4 total oxidation •
strong metal-support interactions • thermal-, vapor- and SO2-
tolerance
[1] a) R. J. Farrauto, Science 2012, 337, 659-660; b) J. J. Willis, E. D.
Goodman, L. Wu, A. R. Riscoe, P. Martins, C. J. Tassone, M. Cargnello, J
Am Chem Soc 2017, 139, 11989-11997; c) S. Zhang, C. Chen, M.
Cargnello, P. Fornasiero, R. J. Gorte, G. W. Graham, X. Pan, Nature
communications 2015, 6, 7778.
[2] a) X. Zou, Z. Rui, H. Ji, ACS Catal. 2017, 7, 1615-1625; b) S. Xie, Y. Liu,
J. Deng, S. Zang, Z. Zhang, H. Arandiyan, H. Dai, Environ Sci Technol
2017, 51, 2271-2279; c) M. Cargnello, J. J. Delgado Jaen, J. C.
Hernandez Garrido, K. Bakhmutsky, T. Montini, J. J. Calvino Gamez, R. J.
Gorte, P. Fornasiero, Science 2012, 337, 713-717.
[3] a) J. H. Park, J. H. Cho, Y. J. Kim, E. S. Kim, H. S. Han, C. H. Shin, Appl
Catal B 2014, 160-161, 135-143; b) T. M. Onn, S. Zhang, L. Arroyo-
Ramirez, Y. C. Chung, G. W. Graham, X. Pan, R. J. Gorte, ACS Catal.
2015, 5, 5696-5701; c) J. J. Willis, A. Gallo, D. Sokaras, H. Aljama, S. H.
Nowak, E. D. Goodman, L. Wu, C. J. Tassone, T. F. Jaramillo, F. Abild-
Pedersen, M. Cargnello, ACS Catal. 2017, 7, 7810-7821.
[4] a) M. Hoffmann, S. Kreft, G. Georgi, G. Fulda, M. M. Pohl, D. Seeburg, C.
Berger Karin, E. V. Kondratenko, S. Wohlrab, Appl Catal B 2015, 179,
313-320; b) X. Y. Chengwu Yang, Stefan Heißler,Alexei Nefedov, Sara
Colussi, JordiLlorca, Alessandro Trovarelli, Yuemin Wang, and Christof
Wöll, Angew.Chem. Int.Ed. 2017, 56, 375-379; c) K. Wu, L. D. Sun, C. H.
Yan, Adv. Energy. Mater. 2016, 6, 1600501.
[5] a) T. Montini, M. Melchionna, M. Monai, P. Fornasiero, Chem Rev 2016,
116, 5987-6041; b) K. M. Murata, Y.; Ohyama, J.; Yamamoto, Y.; AraiS.;
Satsuma, A. , Angewandte Chemie 2017, 56, 15993-15998; c) D. L.
Mowery, R. L. McCormick, Appl Catal B 2001, 34, 287-297; d) A. Solis-
Garcia, J. F. Louvier-Hernandez, A. Almendarez-Camarillo, J. C. Fierro-
Gonzalez, Appl Catal B 2017, 218, 611-620.
[6] a) W. Zhan, J. Wang, H. Wang, J. Zhang, X. Liu, P. Zhang, M. Chi, Y. Guo,
Y. Guo, G. Lu, S. Sun, S. Dai, H. Zhu, J Am Chem Soc 2017, 139, 8846-
8854; b) W. Zhan, Y. Shu, Y. Sheng, H. Zhu, Y. Guo, L. Wang, Y. Guo, J.
Zhang, G. Lu, S. Dai, Angew.Chem. Int.Ed. 2017, 56, 4494-4498; c) W.
Zhan, Q. He, X. Liu, Y. Guo, Y. Wang, L. Wang, Y. Guo, A. Y. Borisevich,
J. Zhang, G. Lu, S. Dai, J Am Chem Soc 2016, 138, 16130-16139; d) S.
This article is protected by copyright. All rights reserved.
This article is protected by copyright. All rights reserved.