ARTICLE IN PRESS
A. Martorana et al. / Journal of Solid State Chemistry 177 (2004) 1268–1275
1275
support is a function of the state of reduction of the
catalytic system.
constant CO2 production rate during the whole process
of ceria–zirconia reduction.
In the course of the anaerobic oxidation of CO
performed during the time-resolved XRD experiments
at 773 K, it is likely that the metal–support interaction is
modified, leading either to an increase of Pt dispersion
originated by diffusion of Pt in ceria–zirconia [32] and/
or to electronic effects [31]. The degree of metal–support
contact affects the catalytic properties [5]. In particular,
the longer induction time of fresh PtCZ1 with respect to
fresh PtCZ5 could be attributed to a less effective metal–
support contact due to lower dispersion of the metal in
PtCZ1. It can be also hypothesized that the in situ
reoxidation treatments are not sufficient to restore
exactly the situation of the metal–support interface of
the fresh catalyst, so that the materials keep memory of
the previous treatments in the iterated redox cycles and,
as a consequence, show a shortening of the induction
times.
References
[1] A. Trovarelli, Catalysis by ceria and related materials, in: G.J.
Hutchings (Series Editor), Catalytic Science Series, Vol. 2,
Imperial College Press, 2002.
[2] J. Kaspar, P. Fornasiero, M. Graziani, Catal. Today 50 (1999)
285–298.
[3] R. Burch, J.P. Breen, F.C. Meunier, Appl. Catal. B 39 (2002)
283–303.
[4] Y.J. Mergler, A. van Aalst, J. van Delft, B.E. Nieuwenhuys, Appl.
Catal. B 10 (1996) 245–261.
[5] A. Holmgren, F. Azarnoush, E. Fridell, Appl. Catal. B. 22 (1999)
49–61.
[6] G. Centi, P. Fornasiero, M. Graziani, J. Kaspar, F. Vazzana,
Top. Catal. 16–17 (2001) 173–180.
[7] A. Martorana, G. Deganello, A. Longo, F. Deganello, L. Liotta,
A. Macaluso, G. Pantaleo, A. Balerna, C. Meneghini, S. Mobilio,
J. Synchrotron Radiat. 10 (2003) 177–182.
As mentioned above, the shortening of the induction
times could also depend on an improved mobility of
bulk oxygens. Mamontov et al. [33] demonstrated by
wide-angle neutron scattering that ceria–zirconia pre-
sents a notable amount of Frenkel defects, with oxygens
that are found in octahedral interstices rather than in the
crystallographic tetrahedral sites. These oxygens can
hardly be forced in the tetrahedral sites even after
prolonged treatment in air at high temperature and are
more available for exchange with the reaction environ-
ment [33]. It is possible therefore that after each
reoxidation step an increasing amount of oxygens do
not return in the regular tetrahedral site, remaining in a
higher-energy state in the more roomy octahedral sites
and producing a net increment of mobile anions in the
successive reduction–oxidation cycles. The behavior of
metal-free ceria–zirconia seems to support this hypoth-
esis (A. Martorana et al., in preparation).
[8] M. Ozawa, M. Kimura, A. Isogai, J. Mater. Sci. 26 (1991)
4818–4822.
[9] J.A. Rodriguez, J.C. Hanson, J.-Y. Kim, G. Liu, A. Iglesias-Juez,
M. Fernandez-Garcia, J. Phys. Chem. B 107 (2003) 3535–3543.
[10] R.D. Gonzalez, T. Lopez, R. Gomez, Catal. Today 35 (1997)
293–317.
[11] L.F. Liotta, A. Macaluso, G. Pantaleo, A. Longo, A. Martorana,
`
G. Deganello, G. Marcı, S. Gialanella, J. Sol–Gel Sci. Technol. 26
(2003) 235–240.
[12] L.F. Liotta, A. Macaluso, A. Longo, G. Pantaleo, A. Martorana,
G. Deganello, Appl. Catal. A 240 (2003) 295–307.
[13] C. Meneghini, G. Artioli, A. Balerna, A. Gualtieri, P. Norby, S.
Mobilio, J. Synchrotron Radiat. 8 (2001) 1162–1166.
[14] A. Hammersley, ESRF Copyright, 1987–2001.
[15] A.C. Larson, R.B. Von Dreele, GSAS, The general structure
analysis system, Los Alamos National Laboratory, 1991–2001.
[16] T. Miki, T. Ogawa, M. Haneda, N. Kakuta, A. Ueno, S. Tateishi,
S. Matsuura, M. Sato, J. Phys. Chem. 94 (1990) 6464–6467.
[17] S.J. Hong, A.V. Virkar, J. Am. Ceram. Soc. 78 (1995) 433–439.
[18] D.J. Kim, J. Am. Ceram. Soc. 72 (1989) 1415–1421.
[19] T. Bunluesin, H. Cordatos, R.J. Gorte, J. Catal. 157 (1995) 222–
226.
[20] V.P. Zhdanov, B. Kasemo, Appl. Surf. Sci. 135 (1998) 297–306.
[21] D. Martin, D. Duprez, J. Phys. Chem. 100 (1996) 9429–9438.
[22] F. Giordano, A. Trovarelli, C. de Leitenburg, M. Giona, J. Catal.
193 (2000) 273–282.
5. Conclusions
The structural modification of Pt/ceria–zirconia TWC
catalysts during the anaerobic oxidation of CO is
studied by XRD in situ. The technique allowed to
establish that a first stage of the support reduction
involves consumption of surface oxygens and that only
after an induction time of variable length, the bulk
reduction takes place as a fast process. The variable
induction time probably depends on the metal–support
interaction, leading to a modified metal–support inter-
face and to fine tuning of the electronic properties of the
catalyst, and on the presence of an increasing amount of
oxygens in the interstitial octahedral sites, more avail-
able to exchanges with the reaction environment. Both
surface and bulk oxygen diffusion are faster than CO2
desorption. This conclusion can account for the nearly
[23] A. Holmgren, B. Andersson, J. Catal. 178 (1998) 14–25.
[24] A. Holmgren, D. Duprez, B. Andersson, J. Catal. 182 (1998)
441–448.
[25] C. Bozo, N. Guilhaume, E. Garbowski, M. Primet, Catal. Today
59 (2000) 33–45.
[26] T. Ioannides, X.E. Verykios, J. Catal. 161 (1996) 560–569.
[27] V.P. Zhdanov, Surf. Sci. 512 (2002) L331–L334.
[28] J.C. Frost, Nature 334 (1988) 577–581.
[29] G. Balducci, J. Kaspar, P. Fornasiero, M. Graziani, M. Saiful
Islam, J.D. Gale, J. Phys. Chem. B 101 (1997) 1750–1753.
[30] D.R. Mullins, K.Z. Zhang, Surf. Sci. 513 (2002) 163–173.
[31] J.H. Bitter, M.A. Cauqui, J.M. Gatica, S. Bernal, D.E. Ramaker,
C.D. Koningsberger, Stud. Surf. Sci. Catal. 130 (2000) 3183–3188.
[32] Y. Zhou, M. Nakashima, J.M. White, J. Phys. Chem. 92 (1988)
812–818.
[33] E. Mamontov, T. Egami, R. Brezny, M. Koranne, S. Tyagi,
J. Phys. Chem. B 104 (2000) 11110–11116.