D.A. Safin et al. / Inorganica Chimica Acta 366 (2011) 19–26
25
107.050(1), b = 93.975(2),
c
= 109.560(1)°, V = 2035.9(5) Å3, Z = 2,
To date we can only speculate on the quite selective character
of this reaction and why the very similar bpy-containing com-
plex [Zn(bpy)LIV2] does not show the same reaction. The latter
might be explained by the rigidity of the phen ligand compared
to bpy and will be further explored in the future by applying
other a-diimine ligands. Further future work will also be devoted
to the application of the C–Cl bond cleavage reaction to other
substrates.
q
= 1.418 g cmꢀ3 ) = 0.764 mmꢀ1, reflections: 15 022 col-
,
l
(Mo Ka
lected, 7792 unique, Rint = 0.026.
3.4.3. [Cd(phen)LIV2]ꢁCH2Cl2
C38H46CdN4O6P2S2ꢁCH2Cl2, Mr = 978.20 g molꢀ1
,
monoclinic,
space group P21/c, a = 19.844(2), b = 10.0204(10), c = 24.155(2) Å,
b = 108.201(1)°, V = 4562.8(7) Å3, Z = 4,
q , l(Mo
= 1.424 g cmꢀ3
Ka
) = 0.804 mmꢀ1, reflections: 26 072 collected, 10 587 unique,
Appendix A. Supplementary material
Rint = 0.038.
CCDC 730814, 730810, 73081, 7308113 and 730812 contain the
supplementary crystallographic data for ([ZnLII2]), ([Cd(bpy)LIV2]),
([Cd(phen)LIV2]ꢁCH2Cl2), ([Zn(bpy)LI2]) and ([Zn(phen)LIVCl]).
These data can be obtained free of charge from The Cambridge
3.4.4. [Zn(bpy)LI2]
C
24H40N6O6P2S2Zn, Mr = 700.09 g molꢀ1
,
monoclinic, space
group C2/c, a = 25.597(6), b = 9.460(2), c = 15.493(4) Å, b =
113.126(2)°, V = 3450.1(14) Å3, Z = 4, = 1.348 g cmꢀ3
(Mo
) = 0.969 mmꢀ1
reflections: 12 650 collected, 3387 unique,
Rint = 0.062.
q
, l
Ka
,
3.4.5. [Zn(phen)LIVCl]
25H27ClN3O3PSZn, Mr = 581.38 g molꢀ1, triclinic, space group
C
References
ꢀ
P1, a = 7.8780(16), b = 10.525(2), c = 17.167(3) Å,
93.51(3),
= 108.20(3)°, V = 1323.4(5) Å3, Z = 2,
(Mo K
) = 1.200 mmꢀ1, reflections: 11 923 collected, 6208 un-
a
q
= 99.61(3), b =
c
= 1.459 g cmꢀ3
,
[1] X. Shen, X. Shi, B. Kang, Y. Liu, Y. Tong, H. Jiang, K. Chen, Polyhedron 17 (1998)
4049.
[2] V. Cârcu, M. Negoiu, T. Rosu, S. Serban, J. Therm. Anal. Calorim. 61 (2000)
935.
l
a
ique, Rint = 0.039.
[3] H.M.A. Salman, Phosphorus Sulfur 173 (2001) 193.
[4] M. Reinel, R. Richter, R. Kirmse, Z. Anorg. Allg. Chem. 628 (2002) 41.
[5] K.E. Armstrong, J.D. Crane, M. Whittingham, Inorg. Chem. Commun. 7 (2004)
784.
4. Conclusions
[6] I.T. Ahmed, Phosphorus Sulfur 181 (2006) 267.
The reaction of [ZnLI,II2] (LI = [NH2C(S)NP(O)(OiPr)2]ꢀ; LII = [Ph-
NHC(S)NP(O)(OiPr)2]ꢀ) or [Cd2LIV4] (LIV = [PhC(S)NP(O)(OiPr)2]ꢀ)
with 2,20-bipyridine (bpy) or 1,10-phenanthroline (phen) leads to
the heteroligand complexes [Zn(bpy)LI,II2], [Zn(phen)LI,II2],
[Cd(bpy)LIV2] or [Cd(phen)LIV2], respectively. The introduction of
the diimine ligands into the coordination sphere of the metal cat-
ion provokes a change from the initial 1,5-O,S- to 1,3-N,S-coordina-
tion of the anionic ligands for the Zn(II) complexes, confirming that
the formation of intramolecular hydrogen bonds N–Hꢁ ꢁ ꢁO@P is a
necessary condition for the stabilization of the 1,3-N,S-isomer. In
the corresponding Cd(II) complexes the initial 1,5-O,S-coordination
was conserved. At the moment we can only speculate on the rea-
son for this different behavior, since, while the softer character of
Cd(II) might favor a N- over a O-coordination, the larger size of
Cd(II) should prefer the larger bite angle of the 1,5-O,S chelate over
the small bite angle of the 1,3-N,S coordination. Interestingly, the
crystal structure of the Zn(II) derivative exhibits the higher sym-
metric stereoisomer (pseudo C2v) having both N(ligand) atoms in
the axial position of the octahedral coordination sphere, while both
S(ligand) and N(diimine) atoms form the equatorial donor atom
set. For the corresponding Cd(II) complexes both this stereoisomer
and a less symmetric isomer (C1), having one S equatorial and one
axial, is found. The binding parameters let us assume that the dif-
ferences in energy are rather small and both forms might coexist in
solution. The broad resonance in NMR spectra at ambient temper-
ature might be an indication for this. However, another reason
might be the (partial and reversible) dissociation of the diimine li-
gands. This is supported by the rather sharp and resolved NMR
spectra of the pentacoordinated complex [Zn(phen)LIVCl] which
[7] J.C. Bruce, N. Revaprasadu, K.R. Koch, New J. Chem. 31 (2007) 1647.
[8] D.C. Cupertino, R.W. Keyte, A.M.Z. Slawin, J.D. Woollins, Polyhedron 17 (1998)
4219.
[9] D.C. Cupertino, D.J. Birdsall, A.M.Z. Slawin, J.D. Woollins, Inorg. Chim. Acta 290
(1999) 1.
[10] M. Ghesner, A. Silvestru, C. Silvestru, J.E. Drake, M.B. Hursthouse, M.E. Light,
Inorg. Chim. Acta 358 (2005) 3724.
[11] F.D. Sokolov, V.V. Brusko, N.G. Zabirov, R.A. Cherkasov, Curr. Org. Chem. 10
(2006) 27.
[12] N.G. Zabirov, V.V. Brusko, A.Y. Verat, D.B. Krivolapov, I.A. Litvinov, R.A.
Cherkasov, Polyhedron 23 (2004) 2243.
[13] D.A. Safin, M.G. Babashkina, F.D. Sokolov, N.G. Zabirov, Inorg. Chem. Commun.
9 (2006) 1133.
[14] M.P. Kutyreva, N.A. Ulakhovich, M.S. Starikova, Yu.I. Salnikov, V.V. Brusko, F.D.
Sokolov, N.G. Zabirov, Russ. J. Inorg. Chem. 52 (2007) 1050.
[15] D.A. Safin, M.G. Babashkina, T.R. Gimadiev, M. Bolte, M.V. Pinus, D.B.
Krivolapov, I.A. Litvinov, Polyhedron 27 (2008) 2978.
[16] D.A. Safin, F.D. Sokolov, T.R. Gimadiev, V.V. Brusko, M.G. Babashkina, D.R.
Chubukaeva, D.B. Krivolapov, I.A. Litvinov, Z. Anorg. Allg. Chem. 634 (2008)
967.
[17] D.A. Safin, M. Bolte, M.G. Babashkina, Transition Met. Chem. 34 (2009)
43.
[18] F.D. Sokolov, D.A. Safin, N.G. Zabirov, P.V. Zotov, R.A. Cherkasov, Russ. J. Gen.
Chem. 75 (2005) 1919.
[19] F.D. Sokolov, D.A. Safin, N.G. Zabirov, V.V. Brusko, B.I. Khairutdinov, D.B.
Krivolapov, I.A. Litvinov, Eur. J. Inorg. Chem. (2006) 2027.
[20] D.A. Safin, F.D. Sokolov, H. Nöth, M.G. Babashkina, T.R. Gimadiev, J.
Galezowska, H. Kozlowski, Polyhedron 27 (2008) 2022.
[21] D.A. Safin, A. Klein, M.G. Babashkina, H. Nöth, D.B. Krivolapov, I.A. Litvinov, H.
Kozlowski, Polyhedron 28 (2009) 1504.
[22] D.A. Safin, M.G. Babashkina, A. Klein, H. Nöth, M. Bolte, D.B. Krivolapov,
Polyhedron 29 (2010) 1837.
[23] X.-X. Zhou, M.-S. Liu, X.-M. Lin, H.-C. Fang, J.-Q. Chen, D.-Q. Yang, Y.-P. Cai,
Inorg. Chim. Acta 362 (2009) 1441.
[24] S. Zhang, Y. Tang, Y. Su, J. Lan, R. Xie, J. You, Inorg. Chim. Acta 362 (2009)
1511.
[25] V. Balamurugan, M.S. Hundal, R. Mukherjee, Chem. Eur. J. 10 (2004)
1683.
was successfully synthesized from the precursor [Zn(phen)LIV
]
2
[26] F.D. Sokolov, N.G. Zabirov, L.N. Yamalieva, V.G. Shtyrlin, R.R. Garipov, V.V.
Brusko, A.Yu. Verat, S.V. Baranov, P. Mlynarz, T. Glowiak, H. Kozlowski, Inorg.
Chim. Acta. 359 (2006) 2087.
[27] R.R. Garipov, V.G. Shtyrlin, D.A. Safin, Y.I. Zyavkina, F.D. Sokolov, A.L. Konkin,
A.V. Aganov, A.V. Zakharov, Chem. Phys. 320 (2006) 59.
[28] F.D. Sokolov, S.V. Baranov, N.G. Zabirov, D.B. Krivolapov, I.A. Litvinov, B.I.
Khairutdinov, R.A. Cherkasov, Mendeleev Commun. 17 (2007) 222.
[29] F.D. Sokolov, S.V. Baranov, D.A. Safin, F.E. Hahn, M. Kubiak, T. Pape, M.G.
Babashkina, N.G. Zabirov, J. Galezowska, H. Kozlowski, R.A. Cherkasov, New J.
Chem. 31 (2007) 1661.
and CH2Cl2. For this very interesting reaction it was established
that both chlorine atoms of a CH2Cl2 molecule are substituted by
LIV forming [Zn(phen)LIVCl] and LIV–CH2–LIV. Using CHCl3 or CCl4
instead of CH2Cl2 do not lead to the formation of chlorine substi-
tuted products even under reflux conditions. Also the other Zn(II)
and Cd(II) complexes described herein did not show the same reac-
tion with CH2Cl2.